scholarly journals HAMILTONIAN CIRCLE ACTIONS WITH MINIMAL FIXED SETS

2012 ◽  
Vol 23 (08) ◽  
pp. 1250071 ◽  
Author(s):  
HUI LI ◽  
SUSAN TOLMAN

Consider an effective Hamiltonian circle action on a compact symplectic 2n-dimensional manifold (M, ω). Assume that the fixed set MS1 is minimal, in two senses: It has exactly two components, X and Y, and dim (X) + dim (Y) = dim (M) - 2. We prove that the integral cohomology ring and Chern classes of M are isomorphic to either those of ℂℙn or (if n ≠ 1 is odd) to those of [Formula: see text], the Grassmannian of oriented two-planes in ℝn+2. In particular, Hi(M;ℤ) = Hi(ℂℙn; ℤ) for all i, and the Chern classes of M are determined by the integral cohomology ring. We also prove that the fixed set data of M agrees exactly with the fixed set data for one of the standard circle actions on one of these two manifolds. In particular, we show that there are no points with stabilizer ℤk for any k > 2. The same conclusions hold when MS1 has exactly two components and the even Betti numbers of M are minimal, that is, b2i(M) = 1 for all i ∈ {0, …, ½ dim (M)}. This provides additional evidence that very few symplectic manifolds with minimal even Betti numbers admit Hamiltonian actions.

1996 ◽  
Vol 38 (1) ◽  
pp. 69-75 ◽  
Author(s):  
David John Green

In this paper we calculate the localisation at the prime 3 of the integral cohomology ring of the Mathieu group M24, together with its mod-3 cohomology ring. The main results areTheorem 1. The ring H*(M24, Z)(3)is the commutative graded Z(3)-algebra with generatorsand relations v2 = 0 and βθ = 0. The Chern classes of the Todd representation in GL11F2


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

The chapter begins with a general discussion of almost complex structures on symplectic manifolds and then addresses the problem of integrability. Subsequent sections discuss a variety of examples of Kähler manifolds, in particular those of complex dimension two, and show how to compute the Chern classes and Betti numbers of hypersurfaces in complex projective space. The last section is a brief introduction to the theory of J-holomorphic curves.


2018 ◽  
Vol 10 (03) ◽  
pp. 493-530
Author(s):  
Mark McLean

In this paper, we give partial answers to the following questions: Which contact manifolds are contactomorphic to links of isolated complex singularities? Which symplectic manifolds are symplectomorphic to smooth affine varieties? The invariant that we will use to distinguish such manifolds is called the growth rate of wrapped Floer cohomology. Using this invariant we show that if [Formula: see text] is a simply connected manifold whose unit cotangent bundle is contactomorphic to the link of an isolated singularity or whose cotangent bundle is symplectomorphic to a smooth affine variety then M must be rationally elliptic and so it must have certain bounds on its Betti numbers.


1991 ◽  
Vol 38 (2) ◽  
pp. 271-283 ◽  
Author(s):  
Marisa Fernández ◽  
Alfred Gray ◽  
John W. Morgan

2001 ◽  
Vol 131 (3) ◽  
pp. 445-457
Author(s):  
DOMINIQUE ARLETTAZ ◽  
CHRISTIAN AUSONI ◽  
MAMORU MIMURA ◽  
NOBUAKI YAGITA

This paper is devoted to the complete calculation of the additive structure of the 2-torsion of the integral cohomology of the infinite special linear group SL(ℤ) over the ring of integers ℤ. This enables us to determine the best upper bound for the order of the Chern classes of all integral and rational representations of discrete groups.


1993 ◽  
Vol 113 (2) ◽  
pp. 253-266 ◽  
Author(s):  
David John Green

In this paper we calculate part of the integral cohomology ring of the sporadic simple group J4; this group has order 221.33.5.7. 113.23.29.31.37.43. More precisely, we obtain all of the cohomology ring except for the 2-primary part. As the cohomology has already been written down [9] at the primes which divide the group order only once, we concentrate here on the primes 3 and 11. In both of these cases the Sylow p-subgroups are extraspecial of order p3 and exponent p. We use the method which identifies the p-primary cohomology with the ring of stable classes in the cohomology of a Sylow p-subgroup. The stable classes are all invariant under the action of the Sylow p-normalizer; and some time is spent finding invariant classes in the cohomology ring of , the extraspecial group. Section 2 studies the prime 11: the invariant classes are the stable classes, because the Sylow 11-subgroups have the Trivial Intersection (T.I.) property. In Section 3 we study the prime 3, and see that all conditions for invariant classes to be stable reduce to one condition.


2017 ◽  
Vol 17 (6) ◽  
pp. 3779-3810 ◽  
Author(s):  
Anthony Bahri ◽  
Soumen Sarkar ◽  
Jongbaek Song

Sign in / Sign up

Export Citation Format

Share Document