scholarly journals Unimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment Maps

2016 ◽  
Vol 27 (05) ◽  
pp. 1650043 ◽  
Author(s):  
Yunhyung Cho

The unimodality conjecture posed by Tolman in [L. Jeffrey, T. Holm, Y. Karshon, E. Lerman and E. Meinrenken, Moment maps in various geometries, http://www.birs.ca/workshops/2005/05w5072/report05w5072.pdf ] states that if [Formula: see text] is a [Formula: see text]-dimensional smooth compact symplectic manifold equipped with a Hamiltonian circle action with only isolated fixed points, then the sequence of Betti numbers [Formula: see text] is unimodal, i.e. [Formula: see text] for every [Formula: see text]. Recently, the author and Kim [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691–696] proved that the unimodality holds in eight-dimensional case by using equivariant cohomology theory. In this paper, we generalize the idea in [Y. Cho and M. Kim, Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett. 21(4) (2014) 691–696] to an arbitrary dimensional case. We prove the conjecture in arbitrary dimension under the assumption that the moment map [Formula: see text] is index-increasing, which means that [Formula: see text] implies [Formula: see text] for every pair of critical points [Formula: see text] and [Formula: see text] of [Formula: see text], where [Formula: see text] is the Morse index of [Formula: see text] with respect to [Formula: see text].

Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

The chapter begins with a discussion of circle actions and their relation to 2-sphere bundles. It continues with a section on general Hamiltonian group actions and moment maps, then proceeds to discuss various explicit examples in both finite and infinite dimensions, and introduces the Marsden–Weinstein quotient, together with new examples that explain its relation to the construction of generating functions for Lagrangians. Further sections give a proof of the Atiyah–Guillemin–Sternberg convexity theorem about the image of the moment map in the case of torus actions, and use equivariant cohomology to prove the Duistermaat–Heckman localization formula for circle actions. It closes with an overview of geometric invariant theory which grows out of the interplay between the actions of a real Lie group and its complexification.


Author(s):  
Loring W. Tu

This chapter provides a proof of the localization formula for a circle action. It evaluates the integral of an equivariantly closed form for a circle action by blowing up the fixed points. On the spherical blow-up, the induced action has no fixed points and is therefore locally free. The spherical blow-up is a manifold with a union of disjoint spheres as its boundary. For a locally free action, one can express an equivariantly closed form as an exact form. Since the localized equivariant cohomology of a locally free action is zero, after localization an equivariantly closed form must be equivariantly exact. Stokes's theorem then reduces the integral to a computation over spheres.


2007 ◽  
Vol 50 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Leonor Godinho

AbstractLet M be a symplectic 4-dimensional manifold equipped with a Hamiltonian circle action with isolated fixed points. We describe a method for computing its integral equivariant cohomology in terms of fixed point data. We give some examples of these computations.


2010 ◽  
Vol 31 (4) ◽  
pp. 1237-1247 ◽  
Author(s):  
ALVARO PELAYO ◽  
SUSAN TOLMAN

AbstractThe study of fixed points is a classical subject in geometry and dynamics. If the circle acts in a Hamiltonian fashion on a compact symplectic manifold M, then it is classically known that there are at least $\frac {1}{2}\,{\dim M}+1$ fixed points; this follows from Morse theory for the momentum map of the action. In this paper we use Atiyah–Bott–Berline–Vergne (ABBV) localization in equivariant cohomology to prove that this conclusion also holds for symplectic circle actions with non-empty fixed sets, as long as the Chern class map is somewhere injective—the Chern class map assigns to a fixed point the sum of the action weights at the point. We complement this result with less sharp lower bounds on the number of fixed points, under no assumptions; from a dynamical systems viewpoint, our results imply that there is no symplectic periodic flow with exactly one or two equilibrium points on a compact manifold of dimension at least eight.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Chiung Hwang ◽  
Sara Pasquetti ◽  
Matteo Sacchi

Abstract We construct a family of 4d$$ \mathcal{N} $$ N = 1 theories that we call $$ {E}_{\rho}^{\sigma } $$ E ρ σ [USp(2N)] which exhibit a novel type of 4d IR duality very reminiscent of the mirror duality enjoyed by the 3d$$ \mathcal{N} $$ N = 4 $$ {T}_{\rho}^{\sigma } $$ T ρ σ [SU(N)] theories. We obtain the $$ {E}_{\rho}^{\sigma } $$ E ρ σ [USp(2N)] theories from the recently introduced E[USp(2N )] theory, by following the RG flow initiated by vevs labelled by partitions ρ and σ for two operators transforming in the antisymmetric representations of the USp(2N) × USp(2N) IR symmetries of the E[USp(2N)] theory. These vevs are the 4d uplift of the ones we turn on for the moment maps of T[SU(N)] to trigger the flow to $$ {T}_{\rho}^{\sigma } $$ T ρ σ [SU(N)]. Indeed the E[USp(2N)] theory, upon dimensional reduction and suitable real mass deformations, reduces to the T[SU(N)] theory. In order to study the RG flows triggered by the vevs we develop a new strategy based on the duality webs of the T[SU(N)] and E[USp(2N)] theories.


Author(s):  
Loring W. Tu

This chapter focuses on circle actions. Specifically, it specializes the Weil algebra and the Weil model to a circle action. In this case, all the formulas simplify. The chapter derives a simpler complex, called the Cartan model, which is isomorphic to the Weil model as differential graded algebras. It considers the theorem that for a circle action, there is a graded-algebra isomorphism. Under the isomorphism F, the Weil differential δ‎ corresponds to a differential called the Cartan differential. An element of the Cartan model is called an equivariant differential form or equivariant form for a circle action on the manifold M.


2017 ◽  
Vol 19 (04) ◽  
pp. 1750043 ◽  
Author(s):  
Silvia Sabatini

Let [Formula: see text] be a compact, connected, almost complex manifold of dimension [Formula: see text] endowed with a [Formula: see text]-preserving circle action with isolated fixed points. In this paper, we analyze the “geography problem” for such manifolds, deriving equations relating the Chern numbers to the index [Formula: see text] of [Formula: see text]. We study the symmetries and zeros of the Hilbert polynomial, which imply many rigidity results for the Chern numbers when [Formula: see text]. We apply these results to the category of compact, connected symplectic manifolds. A long-standing question posed by McDuff and Salamon asked about the existence of non-Hamiltonian actions with isolated fixed points. This question was answered recently by Tolman, with an explicit construction of a 6-dimensional manifold with such an action. One issue that this raises is whether one can find topological criteria that ensure the manifold can only support a Hamiltonian or only a non-Hamiltonian action. In this vein, we are able to deduce such criteria from our rigidity theorems in terms of relatively few Chern numbers, depending on the index. Another consequence is that, if the action is Hamiltonian, the minimal Chern number coincides with the index and is at most [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document