scholarly journals Invariant formula of the determinant of a Heisenberg representation

2017 ◽  
Vol 28 (08) ◽  
pp. 1750068
Author(s):  
Sazzad Ali Biswas

In this paper, we give an explicit formula of the determinant of a Heisenberg representation [Formula: see text] of a finite group [Formula: see text]. Heisenberg representations are induced by 1-dimensional characters in multiple ways, but our formula will be independent of any particular choice of induction.

2021 ◽  
Vol 31 (2) ◽  
pp. 195-211
Author(s):  
X. Y. Chen ◽  
◽  
A. R. Moghaddamfar ◽  
M. Zohourattar ◽  
◽  
...  

In this paper we investigate some properties of the power graph and commuting graph associated with a finite group, using their tree-numbers. Among other things, it is shown that the simple group L2(7) can be characterized through the tree-number of its power graph. Moreover, the classification of groups with power-free decomposition is presented. Finally, we obtain an explicit formula concerning the tree-number of commuting graphs associated with the Suzuki simple groups.


Author(s):  
YANJUN LIU ◽  
WOLFGANG WILLEMS

Abstract Similarly to the Frobenius–Schur indicator of irreducible characters, we consider higher Frobenius–Schur indicators $\nu _{p^n}(\chi ) = |G|^{-1} \sum _{g \in G} \chi (g^{p^n})$ for primes p and $n \in \mathbb {N}$ , where G is a finite group and $\chi $ is a generalised character of G. These invariants give answers to interesting questions in representation theory. In particular, we give several characterisations of groups via higher Frobenius–Schur indicators.


2020 ◽  
Vol 18 (1) ◽  
pp. 1742-1747
Author(s):  
Jianjun Liu ◽  
Mengling Jiang ◽  
Guiyun Chen

Abstract A subgroup H of a finite group G is called weakly pronormal in G if there exists a subgroup K of G such that G = H K G=HK and H ∩ K H\cap K is pronormal in G. In this paper, we investigate the structure of the finite groups in which some subgroups are weakly pronormal. Our results improve and generalize many known results.


2021 ◽  
Vol 58 (2) ◽  
pp. 335-346
Author(s):  
Mackenzie Simper

AbstractConsider an urn containing balls labeled with integer values. Define a discrete-time random process by drawing two balls, one at a time and with replacement, and noting the labels. Add a new ball labeled with the sum of the two drawn labels. This model was introduced by Siegmund and Yakir (2005) Ann. Prob.33, 2036 for labels taking values in a finite group, in which case the distribution defined by the urn converges to the uniform distribution on the group. For the urn of integers, the main result of this paper is an exponential limit law. The mean of the exponential is a random variable with distribution depending on the starting configuration. This is a novel urn model which combines multi-drawing and an infinite type of balls. The proof of convergence uses the contraction method for recursive distributional equations.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Jiakuan Lu ◽  
Kaisun Wu ◽  
Wei Meng

AbstractLet 𝐺 be a finite group. An irreducible character of 𝐺 is called a 𝒫-character if it is an irreducible constituent of (1_{H})^{G} for some maximal subgroup 𝐻 of 𝐺. In this paper, we obtain some conditions for a solvable group 𝐺 to be 𝑝-nilpotent or 𝑝-closed in terms of 𝒫-characters.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


Sign in / Sign up

Export Citation Format

Share Document