Infinite families of monogenic trinomials and their Galois groups

2018 ◽  
Vol 29 (05) ◽  
pp. 1850039 ◽  
Author(s):  
Lenny Jones ◽  
Tristan Phillips

Let [Formula: see text] with [Formula: see text]. Let [Formula: see text] and [Formula: see text] denote, respectively, the symmetric group and alternating group on [Formula: see text] letters. Let [Formula: see text] be an indeterminate, and define [Formula: see text] where [Formula: see text] are certain prescribed forms in [Formula: see text]. For a certain set of these forms, we show unconditionally that there exist infinitely many primes [Formula: see text] such that [Formula: see text] is irreducible over [Formula: see text], [Formula: see text], and the fields [Formula: see text] are distinct and monogenic, where [Formula: see text]. Using a different set of forms, we establish a similar result for all square-free values of [Formula: see text], with [Formula: see text], and any positive integer value of [Formula: see text] for which [Formula: see text] is square-free. Additionally, in this case, we prove that [Formula: see text]. Finally, we show that these results can be extended under the assumption of the [Formula: see text]-conjecture. Our methods make use of recent results of Helfgott and Pasten.

2012 ◽  
Vol 19 (spec01) ◽  
pp. 905-911 ◽  
Author(s):  
Anuj Bishnoi ◽  
Sudesh K. Khanduja

A well known result of Schur states that if n is a positive integer and a0, a1,…,an are arbitrary integers with a0an coprime to n!, then the polynomial [Formula: see text] is irreducible over the field ℚ of rational numbers. In case each ai = 1, it is known that the Galois group of fn(x) over ℚ contains An, the alternating group on n letters. In this paper, we extend this result to a larger class of polynomials fn(x) which leads to the construction of trinomials of degree n for each n with Galois group Sn, the symmetric group on n letters.


2019 ◽  
Vol 15 (06) ◽  
pp. 1127-1141
Author(s):  
Khosro Monsef Shokri ◽  
Jafar Shaffaf ◽  
Reza Taleb

Motivated by Schur’s result on computing the Galois groups of the exponential Taylor polynomials, this paper aims to compute the Galois groups of the Taylor polynomials of the elementary functions [Formula: see text] and [Formula: see text]. We first show that the Galois groups of the [Formula: see text]th Taylor polynomials of [Formula: see text] are as large as possible, namely, [Formula: see text] (full symmetric group) or [Formula: see text] (alternating group), depending on the residue of the integer number [Formula: see text] modulo [Formula: see text]. We then compute the Galois groups of the [Formula: see text]th Taylor polynomials of [Formula: see text] and show that these Galois groups essentially coincide with the Coexter groups of type [Formula: see text] (or an index 2 subgroup of the corresponding Coexter group).


2012 ◽  
Vol 9 (3) ◽  
pp. 565-568
Author(s):  
Baghdad Science Journal

For a nonempty subset X of a group G and a positive integer m , the product of X , denoted by Xm ,is the set Xm = That is , Xm is the subset of G formed by considering all possible ordered products of m elements form X. In the symmetric group Sn, the class Cn (n odd positive integer) split into two conjugacy classes in An denoted Cn+ and Cn- . C+ and C- were used for these two parts of Cn. This work we prove that for some odd n ,the class C of 5- cycle in Sn has the property that = An n 7 and C+ has the property that each element of C+ is conjugate to its inverse, the square of each element of it is the element of C-, these results were used to prove that C+ C- = An exceptional of I (I the identity conjugacy class), when n=5+4k , k>=0.


2020 ◽  
Vol 63 (1) ◽  
pp. 106-120
Author(s):  
BOUALEM BENSEBAA ◽  
ABBAS MOVAHHEDI ◽  
ALAIN SALINIER

AbstractIt is proven that, for a wide range of integers s (2 < s < p − 2), the existence of a single wildly ramified odd prime l ≠ p leads to either the alternating group or the full symmetric group as Galois group of any irreducible trinomial Xp + aXs + b of prime degree p.


2021 ◽  
Vol 7 (1) ◽  
pp. 212-224
Author(s):  
Lingfeng Ao ◽  
◽  
Shuanglin Fei ◽  
Shaofang Hong

<abstract><p>Let $ n\ge 8 $ be an integer and let $ p $ be a prime number satisfying $ \frac{n}{2} &lt; p &lt; n-2 $. In this paper, we prove that the Galois groups of the trinomials</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ T_{n, p, k}(x): = x^n+n^kp^{(n-1-p)k}x^p+n^kp^{nk}, $\end{document} </tex-math></disp-formula></p> <p><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ S_{n, p}(x): = x^n+p^{n(n-1-p)}n^px^p+n^pp^{n^2} $\end{document} </tex-math></disp-formula></p> <p>and</p> <p><disp-formula> <label/> <tex-math id="FE3"> \begin{document}$ E_{n, p}(x): = x^n+pnx^{n-p}+pn^2 $\end{document} </tex-math></disp-formula></p> <p>are the full symmetric group $ S_n $ under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials $ f(x) = x^n+ax^s+b $ with integral coefficients.</p></abstract>


2019 ◽  
Vol 12 (3) ◽  
pp. 51-68
Author(s):  
Oleg Gutik ◽  
Anatolii Savchuk

In this paper we study the structure of the monoid Iℕn ∞ of  cofinite partial isometries of the n-th power of the set of positive integers ℕ with the usual metric for a positive integer n > 2. We describe the group of units and the subset of idempotents of the semigroup Iℕn ∞, the natural partial order and Green's relations on Iℕn ∞. In particular we show that the quotient semigroup Iℕn ∞/Cmg, where Cmg is the minimum group congruence on Iℕn ∞, is isomorphic to the symmetric group Sn and D = J in Iℕn ∞. Also, we prove that for any integer n ≥2 the semigroup Iℕn ∞  is isomorphic to the semidirect product Sn ×h(P∞(Nn); U) of the free semilattice with the unit (P∞(Nn); U)  by the symmetric group Sn.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Christopher J. Brooks ◽  
Abraham Mart\'ın Campo ◽  
Frank Sottile

International audience We show that the Galois group of any Schubert problem involving lines in projective space contains the alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decompositions of $\mathfrak{sl}_2\mathbb{C}$ -modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the inequality by estimating this integral. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l'espace projective contient le groupe alterné. En utilisant un critère de Vakil et l'argument de position spéciale due à Schubert, ce résultat se déduit d'une inégalité particulière des nombres de Kostka des tableaux ayant deux rangées. Dans la plupart des cas, une injection combinatoriale facile montre l’inégalité. Pour les cas restants, on utilise le fait que ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel des $\mathfrak{sl}_2\mathbb{C}$-modules. En interprétant le produit tensoriel comme l'action de certaines matrices de Toeplitz commutant entre elles, et en utilisant de l'analyse spectrale et les séries de Fourier, on réécrit l’inégalité comme la positivité d'une intégrale. L’inégalité sera établie en estimant cette intégrale.


2020 ◽  
Vol 27 (01) ◽  
pp. 131-136
Author(s):  
Elena V. Konstantinova ◽  
Daria Lytkina

We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group 〈s〉 is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {−n+1, 1−n+1, 22 −n+1, …, (n−1)2 −n+1}.


1996 ◽  
Vol 39 (2) ◽  
pp. 285-289
Author(s):  
John Brinkman

Let G be a finite group and denote by µ(G) (see [2]) the least positive integer m such that G has a faithful permutation representation in the symmetric group of degree m. This note considers the value of µ(G) when G is a double cover of the symmetric group.


Sign in / Sign up

Export Citation Format

Share Document