Integral Cayley Graphs over Finite Groups

2020 ◽  
Vol 27 (01) ◽  
pp. 131-136
Author(s):  
Elena V. Konstantinova ◽  
Daria Lytkina

We prove that the spectrum of a Cayley graph over a finite group with a normal generating set S containing with every its element s all generators of the cyclic group 〈s〉 is integral. In particular, a Cayley graph of a 2-group generated by a normal set of involutions is integral. We prove that a Cayley graph over the symmetric group of degree n no less than 2 generated by all transpositions is integral. We find the spectrum of a Cayley graph over the alternating group of degree n no less than 4 with a generating set of 3-cycles of the form (k i j) with fixed k, as {−n+1, 1−n+1, 22 −n+1, …, (n−1)2 −n+1}.

Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6419-6429 ◽  
Author(s):  
Modjtaba Ghorbani ◽  
Farzaneh Nowroozi-Larki

Let G be a finite group of order pqr where p > q > r > 2 are prime numbers. In this paper, we find the spectrum of Cayley graph Cay(G,S) where S ? G \ {e} is a normal symmetric generating subset.


2019 ◽  
Vol 18 (01) ◽  
pp. 1950013
Author(s):  
Alireza Abdollahi ◽  
Maysam Zallaghi

Let [Formula: see text] be a group and [Formula: see text] an inverse closed subset of [Formula: see text]. By a Cayley graph [Formula: see text], we mean the graph whose vertex set is the set of elements of [Formula: see text] and two vertices [Formula: see text] and [Formula: see text] are adjacent if [Formula: see text]. A group [Formula: see text] is called a CI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for some automorphism [Formula: see text] of [Formula: see text]. A finite group [Formula: see text] is called a BI-group if [Formula: see text] for some inverse closed subsets [Formula: see text] and [Formula: see text] of [Formula: see text], then [Formula: see text] for all positive integers [Formula: see text], where [Formula: see text] denotes the set [Formula: see text]. It was asked by László Babai [Spectra of Cayley graphs, J. Combin. Theory Ser. B 27 (1979) 180–189] if every finite group is a BI-group; various examples of finite non-BI-groups are presented in [A. Abdollahi and M. Zallaghi, Character sums of Cayley graph, Comm. Algebra 43(12) (2015) 5159–5167]. It is noted in the latter paper that every finite CI-group is a BI-group and all abelian finite groups are BI-groups. However, it is known that there are finite abelian non-CI-groups. Existence of a finite non-abelian BI-group which is not a CI-group is the main question which we study here. We find two non-abelian BI-groups of orders 20 and 42 which are not CI-groups. We also list all BI-groups of orders up to 30.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Ebrahim Ghaderpour ◽  
Dave Witte Morris

Suppose that G is a finite group, such that |G|=27p, where p is prime. We show that if S is any generating set of G, then there is a Hamiltonian cycle in the corresponding Cayley graph Cay (G;S).


2020 ◽  
pp. 1-6
Author(s):  
Amira Fadina Ahmad Fadzil ◽  
Nor Haniza Sarmin ◽  
Ahmad Erfanian

A Cayley graph of a finite group G with respect to a subset S of G is a graph where the vertices of the graph are the elements of the group and two distinct vertices x and y are adjacent to each other if xy−1 is in the subset S. The subset of the Cayley graph is inverse closed and does not include the identity of the group. For a simple finite graph, the energy of a graph can be determined by summing up the positive values of the eigenvalues of the adjacency matrix of the graph. In this paper, the graph being studied is the Cayley graph of symmetric group of order 24 where S is the subset of S4 of valency up to two. From the Cayley graphs, the eigenvalues are calculated by constructing the adjacency matrix of the graphs and by using some properties of special graphs. Finally, the energy of the respected Cayley graphs is computed and presented. Keywords: energy of graph; cayley graph; symmetric groups


2010 ◽  
Vol 17 (01) ◽  
pp. 121-130 ◽  
Author(s):  
A. R. Moghaddamfar ◽  
A. R. Zokayi

The degree pattern of a finite group G denoted by D(G) was introduced in [5]. We say that G is k-fold OD-characterizable if there exist exactly k non-isomorphic finite groups having the same order and same degree pattern as G. In the present article, we show that the alternating group A10 and the automorphism group Aut (McL) are 2-fold OD-characterizable, while the automorphism group Aut (J2) is 3-fold OD-characterizable and the symmetric group S10 is 8-fold OD-characterizable. It is worth mentioning that the prime graphs associated to these groups are connected and, in fact, among the groups with this property, they are the first groups which are investigated for OD-characterizability.


10.37236/353 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Walter Klotz ◽  
Torsten Sander

Let $\Gamma$ be a finite, additive group, $S \subseteq \Gamma, 0\notin S, -S=\{-s: s\in S\}=S$. The undirected Cayley graph Cay$(\Gamma,S)$ has vertex set $\Gamma$ and edge set $\{\{a,b\}: a,b\in \Gamma$, $a-b \in S\}$. A graph is called integral, if all of its eigenvalues are integers. For an abelian group $\Gamma$ we show that Cay$(\Gamma,S)$ is integral, if $S$ belongs to the Boolean algebra $B(\Gamma)$ generated by the subgroups of $\Gamma$. The converse is proven for cyclic groups. A finite group $\Gamma$ is called Cayley integral, if every undirected Cayley graph over $\Gamma$ is integral. We determine all abelian Cayley integral groups.


2019 ◽  
Vol 22 (3) ◽  
pp. 515-527
Author(s):  
Bret J. Benesh ◽  
Dana C. Ernst ◽  
Nándor Sieben

AbstractWe study an impartial game introduced by Anderson and Harary. The game is played by two players who alternately choose previously-unselected elements of a finite group. The first player who builds a generating set from the jointly-selected elements wins. We determine the nim-numbers of this game for finite groups of the form{T\times H}, whereTis a 2-group andHis a group of odd order. This includes all nilpotent and hence abelian groups.


Author(s):  
Ramesh Prasad Panda ◽  
Kamal Lochan Patra ◽  
Binod Kumar Sahoo

The power graph [Formula: see text] of a finite group [Formula: see text] is the undirected simple graph whose vertex set is [Formula: see text], in which two distinct vertices are adjacent if one of them is an integral power of the other. For an integer [Formula: see text], let [Formula: see text] denote the cyclic group of order [Formula: see text] and let [Formula: see text] be the number of distinct prime divisors of [Formula: see text]. The minimum degree [Formula: see text] of [Formula: see text] is known for [Formula: see text], see [R. P. Panda and K. V. Krishna, On the minimum degree, edge-connectivity and connectivity of power graphs of finite groups, Comm. Algebra 46(7) (2018) 3182–3197]. For [Formula: see text], under certain conditions involving the prime divisors of [Formula: see text], we identify at most [Formula: see text] vertices such that [Formula: see text] is equal to the degree of at least one of these vertices. If [Formula: see text], or that [Formula: see text] is a product of distinct primes, we are able to identify two such vertices without any condition on the prime divisors of [Formula: see text].


2019 ◽  
Vol 29 (08) ◽  
pp. 1419-1430
Author(s):  
William Cocke

The number of distinct [Formula: see text]-variable word maps on a finite group [Formula: see text] is the order of the rank [Formula: see text] free group in the variety generated by [Formula: see text]. For a group [Formula: see text], the number of word maps on just two variables can be quite large. We improve upon previous bounds for the number of word maps over a finite group [Formula: see text]. Moreover, we show that our bound is sharp for the number of 2-variable word maps over the affine group over fields of prime order and over the alternating group on five symbols.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
Abdullah Aljouiee

A finite group G is called splitting or splittable if it is a union of some collections of its proper subgroups intersecting pairwise at the identity. A special kind of splitting is known to be normal splitting. Also, a group G is said to have the basis property if, for each subgroup H≤G, H has a basis (minimal generating set), and any two bases have the same cardinality. In this work, I discuss a relation between classes of finite groups that possess both normal splitting and the basis property. This paper shows mainly that any non-p-group with basis property is normal splitting. However, the converse is not true in general. A counterexample is given. It is well known that any p-group has basis property. I demonstrate some types of p-groups which are splitting as well.


Sign in / Sign up

Export Citation Format

Share Document