scholarly journals On the monoid of cofinite partial isometries of $\qq{N}^n$ with the usual metric

2019 ◽  
Vol 12 (3) ◽  
pp. 51-68
Author(s):  
Oleg Gutik ◽  
Anatolii Savchuk

In this paper we study the structure of the monoid Iℕn ∞ of  cofinite partial isometries of the n-th power of the set of positive integers ℕ with the usual metric for a positive integer n > 2. We describe the group of units and the subset of idempotents of the semigroup Iℕn ∞, the natural partial order and Green's relations on Iℕn ∞. In particular we show that the quotient semigroup Iℕn ∞/Cmg, where Cmg is the minimum group congruence on Iℕn ∞, is isomorphic to the symmetric group Sn and D = J in Iℕn ∞. Also, we prove that for any integer n ≥2 the semigroup Iℕn ∞  is isomorphic to the semidirect product Sn ×h(P∞(Nn); U) of the free semilattice with the unit (P∞(Nn); U)  by the symmetric group Sn.

2019 ◽  
Vol 11 (2) ◽  
pp. 296-310
Author(s):  
O.V. Gutik ◽  
A.S. Savchuk

In this paper we study submonoids of the monoid $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ of almost monotone injective co-finite partial selfmaps of positive integers $\mathbb{N}$. Let $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{N})$ be a submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which consists of cofinite monotone partial bijections of $\mathbb{N}$ and $\mathscr{C}_{\mathbb{N}}$ be a subsemigroup of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which is generated by the partial shift $n\mapsto n+1$ and its inverse partial map. We show that every automorphism of a full inverse subsemigroup of $\mathscr{I}_{\infty}^{\!\nearrow}(\mathbb{N})$ which contains the semigroup $\mathscr{C}_{\mathbb{N}}$ is the identity map. We construct a submonoid $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ with the following property: if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathbf{I}\mathbb{N}_{\infty}^{[\underline{1}]}$ as a submonoid, then every non-identity congruence $\mathfrak{C}$ on $S$ is a group congruence. We show that if $S$ is an inverse submonoid of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ such that $S$ contains $\mathscr{C}_{\mathbb{N}}$ as a submonoid then $S$ is simple and the quotient semigroup $S/\mathfrak{C}_{\mathbf{mg}}$, where $\mathfrak{C}_{\mathbf{mg}}$ is the minimum group congruence on $S$, is isomorphic to the additive group of integers. Also, we study topologizations of inverse submonoids of $\mathscr{I}_{\infty}^{\,\Rsh\!\!\nearrow}(\mathbb{N})$ which contain $\mathscr{C}_{\mathbb{N}}$ and embeddings of such semigroups into compact-like topological semigroups.


10.37236/1638 ◽  
2002 ◽  
Vol 9 (1) ◽  
Author(s):  
Hélène Barcelo ◽  
Robert Maule ◽  
Sheila Sundaram

For a fixed positive integer $n,$ let $S_n$ denote the symmetric group of $n!$ permutations on $n$ symbols, and let maj${(\sigma)}$ denote the major index of a permutation $\sigma.$ Fix positive integers $k < \ell\leq n,$ and nonnegative integers $i,j.$ Let $m_n(i\backslash k; j\backslash \ell)$ denote the cardinality of the set $\{\sigma\in S_n:$ maj$(\sigma)\equiv i \pmod k,$ maj$ (\sigma^{-1})\equiv j \pmod \ell\}.$ In this paper we use combinatorial methods to investigate these numbers. Results of Gordon and Roselle imply that when $k,$ $\ell$ are relatively prime, $$ m_n(i\backslash k; j\backslash \ell)= { {n!}\over{k\cdot\ell}} .$$ We give a combinatorial proof of this in the case when $\ell$ divides $n-1$ and $k$ divides $n.$


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1813
Author(s):  
S. Subburam ◽  
Lewis Nkenyereye ◽  
N. Anbazhagan ◽  
S. Amutha ◽  
M. Kameswari ◽  
...  

Consider the Diophantine equation yn=x+x(x+1)+⋯+x(x+1)⋯(x+k), where x, y, n, and k are integers. In 2016, a research article, entitled – ’power values of sums of products of consecutive integers’, primarily proved the inequality n= 19,736 to obtain all solutions (x,y,n) of the equation for the fixed positive integers k≤10. In this paper, we improve the bound as n≤ 10,000 for the same case k≤10, and for any fixed general positive integer k, we give an upper bound depending only on k for n.


2018 ◽  
Vol 68 (5) ◽  
pp. 975-980
Author(s):  
Zhongyan Shen ◽  
Tianxin Cai

Abstract In 2014, Wang and Cai established the following harmonic congruence for any odd prime p and positive integer r, $$\sum_{\begin{subarray}{c}i+j+k=p^{r}\\ i,j,k\in\mathcal{P}_{p}\end{subarray}}\frac{1}{ijk}\equiv-2p^{r-1}B_{p-3} \quad\quad(\text{mod} \,\, {p^{r}}),$$ where $ \mathcal{P}_{n} $ denote the set of positive integers which are prime to n. In this note, we obtain the congruences for distinct odd primes p, q and positive integers α, β, $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{2pq}\end{subarray}}\frac{1}{ijk}\equiv\frac{7}{8}\left(2-% q\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}\pmod{p^{% \alpha}} $$ and $$ \sum_{\begin{subarray}{c}i+j+k=p^{\alpha}q^{\beta}\\ i,j,k\in\mathcal{P}_{pq}\end{subarray}}\frac{(-1)^{i}}{ijk}\equiv\frac{1}{2}% \left(q-2\right)\left(1-\frac{1}{q^{3}}\right)p^{\alpha-1}q^{\beta-1}B_{p-3}% \pmod{p^{\alpha}}. $$


1991 ◽  
Vol 14 (3) ◽  
pp. 457-462 ◽  
Author(s):  
Clark Kimberling

Associated with any irrational numberα>1and the functiong(n)=[αn+12]is an array{s(i,j)}of positive integers defined inductively as follows:s(1,1)=1,s(1,j)=g(s(1,j−1))for allj≥2,s(i,1)=the least positive integer not amongs(h,j)forh≤i−1fori≥2, ands(i,j)=g(s(i,j−1))forj≥2. This work considers algebraic integersαof degree≥3for which the rows of the arrays(i,j)partition the set of positive integers. Such an array is called a Stolarsky array. A typical result is the following (Corollary 2): ifαis the positive root ofxk−xk−1−…−x−1fork≥3, thens(i,j)is a Stolarsky array.


1961 ◽  
Vol 5 (1) ◽  
pp. 35-40 ◽  
Author(s):  
R. A. Rankin

For any positive integers n and v letwhere d runs through all the positive divisors of n. For each positive integer k and real x > 1, denote by N(v, k; x) the number of positive integers n ≦ x for which σv(n) is not divisible by k. Then Watson [6] has shown that, when v is odd,as x → ∞; it is assumed here and throughout that v and k are fixed and independent of x. It follows, in particular, that σ (n) is almost always divisible by k. A brief account of the ideas used by Watson will be found in § 10.6 of Hardy's book on Ramanujan [2].


2018 ◽  
Vol 11 (04) ◽  
pp. 1850056 ◽  
Author(s):  
Zahid Raza ◽  
Hafsa Masood Malik

Let [Formula: see text] be any positive integers such that [Formula: see text] and [Formula: see text] is a square free positive integer of the form [Formula: see text] where [Formula: see text] and [Formula: see text] The main focus of this paper is to find the fundamental solution of the equation [Formula: see text] with the help of the continued fraction of [Formula: see text] We also obtain all the positive solutions of the equations [Formula: see text] and [Formula: see text] by means of the Fibonacci and Lucas sequences.Furthermore, in this work, we derive some algebraic relations on the Pell form [Formula: see text] including cycle, proper cycle, reduction and proper automorphism of it. We also determine the integer solutions of the Pell equation [Formula: see text] in terms of [Formula: see text] We extend all the results of the papers [3, 10, 27, 37].


2009 ◽  
Vol 51 (2) ◽  
pp. 243-252
Author(s):  
ARTŪRAS DUBICKAS

AbstractLetx0<x1<x2< ⋅⋅⋅ be an increasing sequence of positive integers given by the formulaxn=⌊βxn−1+ γ⌋ forn=1, 2, 3, . . ., where β > 1 and γ are real numbers andx0is a positive integer. We describe the conditions on integersbd, . . .,b0, not all zero, and on a real number β > 1 under which the sequence of integerswn=bdxn+d+ ⋅⋅⋅ +b0xn,n=0, 1, 2, . . ., is bounded by a constant independent ofn. The conditions under which this sequence can be ultimately periodic are also described. Finally, we prove a lower bound on the complexity function of the sequenceqxn+1−pxn∈ {0, 1, . . .,q−1},n=0, 1, 2, . . ., wherex0is a positive integer,p>q> 1 are coprime integers andxn=⌈pxn−1/q⌉ forn=1, 2, 3, . . . A similar speculative result concerning the complexity of the sequence of alternatives (F:x↦x/2 orS:x↦(3x+1)/2) in the 3x+1 problem is also given.


2021 ◽  
Vol 14 (2) ◽  
pp. 380-395
Author(s):  
Jiramate Punpim ◽  
Somphong Jitman

Triangular numbers have been of interest and continuously studied due to their beautiful representations, nice properties, and various links with other figurate numbers. For positive integers n and l, the nth l-isosceles triangular number is a generalization of triangular numbers defined to be the arithmetic sum of the formT(n, l) = 1 + (1 + l) + (1 + 2l) + · · · + (1 + (n − 1)l).In this paper, we focus on characterizations and identities for isosceles triangular numbers as well as their links with other figurate numbers. Recursive formulas for constructions of isosceles triangular numbers are given together with necessary and sufficient conditions for a positive integer to be a sum of isosceles triangular  numbers. Various identities for isosceles triangular numbers are established. Results on triangular numbers can be viewed as a special case.


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Sign in / Sign up

Export Citation Format

Share Document