ON S-HARDY–LITTLEWOOD HOMOGENEOUS SPACES

1998 ◽  
Vol 09 (06) ◽  
pp. 723-757 ◽  
Author(s):  
MASANORI MORISHITA ◽  
TAKAO WATANABE

We study the asymptotic distribution of S-integral points on affine homogeneous spaces in the light of the Hardy–Littlewood property introduced by Borovoi and Rudnick. We introduce the S-Hardy–Littlewood property for affine homogeneous spaces defined over an algebraic number field and a finite set S of places of the base field. We work with the adelic harmonic analysis on affine algebraic groups over a number field to determine the asymptotic density of S-integral points under congruence conditions. We give some new examples of strongly or relatively S-Hardy–Littlewood homogeneous spaces over number fields. As an application, we prove certain asymptotically uniform distribution property of integral points on an ellipsoid defined by a totally positive definite tenary quadratic form over a totally real number field.

Author(s):  
B. J. Birch

Let K be a finite algebraic number field, of degree R. Then those integers of K which may be expressed as a sum of dth powers generate a subring JK, d of the integers of K (JK, d need not be an ideal of K, as the simplest example K = Q(i), d = 2 shows. JK, d is an order, it in fact contains all integer multiples of d!; it also contains all rational integers). Siegel(12) showed that every sufficiently large totally positive integer of JK, d is the sum of at most (2d−1 + R) Rd totally positive dth powers; and he conjectured that the number of dth powers necessary should be independent of the field K—for instance, he had proved(11) that five squares are enough for every K. In this paper, we will show that, as far as the analytic part of the argument is concerned, Siegel's conjecture is correct. I have not been able to deal properly with the problem of proving that the singular series is positive; but since Siegel wrote, a good deal of extra information about singular series has been obtained, in particular by Stemmler(14) and Gray(4). The most spectacular consequence of all this is that if p is prime, then every large enough totally positive integer of JK, p is a sum of (2p + 1) totally positive pth. powers.


Author(s):  
M. Ram Murty ◽  
Siddhi S. Pathak

For an algebraic number field [Formula: see text], let [Formula: see text] be the associated Dedekind zeta-function. It is conjectured that [Formula: see text] is transcendental for any positive integer [Formula: see text]. The only known case of this conjecture was proved independently by Siegel and Klingen, namely that, when [Formula: see text] is a totally real number field, [Formula: see text] is an algebraic multiple of [Formula: see text] and hence, is transcendental. If [Formula: see text] is not totally real, the question of whether [Formula: see text] is irrational or not remains open. In this paper, we prove that for a fixed integer [Formula: see text], at most one of [Formula: see text] is rational, as [Formula: see text] varies over all imaginary quadratic fields. We also discuss a generalization of this theorem to CM-extensions of number fields.


1977 ◽  
Vol 67 ◽  
pp. 159-164 ◽  
Author(s):  
Yoshiyuki Kitaoka

Let k be a totally real algebraic number field, the maximal order of k, and let L (resp. M) be a Z-lattice of a positive definite quadratic space U (resp. V) over the field Q of rational numbers. Suppose that there is an isometry σ from L onto M. We have shown that the assumption implies σ(L) = M in some cases in [2]. Our aim in this paper is to improve the results of [2]. In § 1 we introduce the notion of E-type: Let L be a positive definite quadratic lattice over Z.


1983 ◽  
Vol 92 ◽  
pp. 89-106 ◽  
Author(s):  
Yoshio Mimura

Let K be a totally real algebraic number field. In a positive definite quadratic space over K a lattice En is called a unit lattice of rank n if En has an orthonormal basis {e1 …, en}. The class number one problem is to find n and K for which the class number of En is one. Dzewas ([1]), Nebelung ([3]), Pfeuffer ([6], [7]) and Peters ([5]) have settled this problem.


2007 ◽  
Vol 143 (6) ◽  
pp. 1359-1373 ◽  
Author(s):  
Gaëtan Chenevier

AbstractLet E be a CM number field and let S be a finite set of primes of E containing the primes dividing a given prime number l and another prime u split above the maximal totally real subfield of E. If ES denotes a maximal algebraic extension of E which is unramified outside S, we show that the natural maps $\mathrm {Gal}(\overline {E_u}/E_u) \longrightarrow \mathrm {Gal}(E_S/E)$ are injective. We discuss generalizations of this result.


2007 ◽  
Vol 03 (04) ◽  
pp. 541-556 ◽  
Author(s):  
WAI KIU CHAN ◽  
A. G. EARNEST ◽  
MARIA INES ICAZA ◽  
JI YOUNG KIM

Let 𝔬 be the ring of integers in a number field. An integral quadratic form over 𝔬 is called regular if it represents all integers in 𝔬 that are represented by its genus. In [13,14] Watson proved that there are only finitely many inequivalent positive definite primitive integral regular ternary quadratic forms over ℤ. In this paper, we generalize Watson's result to totally positive regular ternary quadratic forms over [Formula: see text]. We also show that the same finiteness result holds for totally positive definite spinor regular ternary quadratic forms over [Formula: see text], and thus extends the corresponding finiteness results for spinor regular quadratic forms over ℤ obtained in [1,3].


1988 ◽  
Vol 30 (2) ◽  
pp. 231-236
Author(s):  
Shigeaki Tsuyumine

Let K be a totally real algebraic number field of degree n > 1, and let OK be the maximal order. We denote by гk, the Hilbert modular group SL2(OK) associated with K. On the extent of the weight of an automorphy factor for гK, some restrictions are imposed, not as in the elliptic modular case. Maass [5] showed that the weight is integral for K = ℚ(√5). It was shown by Christian [1] that for any Hilbert modular group it is a rational number with the bounded denominator depending on the group.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250087 ◽  
Author(s):  
ANDREAS PHILIPP

Let R be an order in an algebraic number field. If R is a principal order, then many explicit results on its arithmetic are available. Among others, R is half-factorial if and only if the class group of R has at most two elements. Much less is known for non-principal orders. Using a new semigroup theoretical approach, we study half-factoriality and further arithmetical properties for non-principal orders in algebraic number fields.


1987 ◽  
Vol 107 ◽  
pp. 135-146 ◽  
Author(s):  
Yoshitaka Odai

Let I be an odd prime number and let K be an algebraic number field of degree I. Let M denote the genus field of K, i.e., the maximal extension of K which is a composite of an absolute abelian number field with K and is unramified at all the finite primes of K. In [4] Ishida has explicitly constructed M. Therefore it is of some interest to investigate unramified cyclic extensions of K of degree l, which are not contained in M. In the preceding paper [6] we have obtained some results about this problem in the case that K is a pure cubic field. The purpose of this paper is to extend those results.


Sign in / Sign up

Export Citation Format

Share Document