scholarly journals A SUPERSYMMETRIC MODEL WITH THE GAUGE SYMMETRY SU(3)1 × SU(2)1 × U(1)1 × SU(3)2 × SU(2)2 × U(1)2

2003 ◽  
Vol 18 (14) ◽  
pp. 967-975 ◽  
Author(s):  
J. G. KÖRNER ◽  
CHUN LIU

A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.

2001 ◽  
Vol 16 (13) ◽  
pp. 835-844
Author(s):  
ILIA GOGOLADZE ◽  
MIRIAN TSULAIA

We suggest a new mechanism for electroweak symmetry breaking in the supersymmetric Standard Model. Our suggestion is based on the presence of an anomalous U (1)A gauge symmetry, which naturally arises in the four-dimensional superstring theory, and heavily relies on the value of the corresponding Fayet–Illiopoulos ξ-term.


2014 ◽  
Vol 89 (1) ◽  
Author(s):  
Emidio Gabrielli ◽  
Matti Heikinheimo ◽  
Kristjan Kannike ◽  
Antonio Racioppi ◽  
Martti Raidal ◽  
...  

2010 ◽  
Vol 25 (09) ◽  
pp. 691-701
Author(s):  
TATSURU KIKUCHI

Recently, conceptually new physics beyond the Standard Model has been proposed by Georgi, where a new physics sector becomes conformal and provides "unparticle" which couples to the Standard Model sector through higher dimensional operators in low energy effective theory. Among several possibilities, we focus on operators involving the unparticle and Higgs boson. Once the Higgs develops the vacuum expectation value (VEV), the conformal symmetry is broken and as a result, the mixing between the unparticle and the Higgs boson emerges. In the former part of this paper, we consider a natural realization of bosonic seesaw in the context of unparticle physics. In this framework, the negative mass squared or the electroweak symmetry breaking vacuum is achieved as a result of mass matrix diagonalization. So, the bosonic seesaw mechanism for the electroweak symmetry breaking can naturally be understood in the framework of unparticle physics. In the latter part of this paper, we consider the unparticle as a hidden sector of supersymmetry breaking, and give some phenomenological consequences of this scenario. The result shows that there is a possibility for the unparticle as a hidden sector in SUSY breaking sector, and can provide a solution to the μ problem in SUSY models.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Timothy Cohen ◽  
Nathaniel Craig ◽  
Xiaochuan Lu ◽  
Dave Sutherland

Abstract There are two canonical approaches to treating the Standard Model as an Effective Field Theory (EFT): Standard Model EFT (SMEFT), expressed in the electroweak symmetric phase utilizing the Higgs doublet, and Higgs EFT (HEFT), expressed in the broken phase utilizing the physical Higgs boson and an independent set of Goldstone bosons. HEFT encompasses SMEFT, so understanding whether SMEFT is sufficient motivates identifying UV theories that require HEFT as their low energy limit. This distinction is complicated by field redefinitions that obscure the naive differences between the two EFTs. By reformulating the question in a geometric language, we derive concrete criteria that can be used to distinguish SMEFT from HEFT independent of the chosen field basis. We highlight two cases where perturbative new physics must be matched onto HEFT: (i) the new particles derive all of their mass from electroweak symmetry breaking, and (ii) there are additional sources of electroweak symmetry breaking. Additionally, HEFT has a broader practical application: it can provide a more convergent parametrization when new physics lies near the weak scale. The ubiquity of models requiring HEFT suggests that SMEFT is not enough.


1992 ◽  
Vol 07 (26) ◽  
pp. 6473-6492 ◽  
Author(s):  
YU. F. PIROGOV

The minimum nonlinear extension SU(3)×U(1)/SU(2)×U(1) to the Standard Model, where the Higgs doublet is a composite Goldstone boson, is investigated. The canonical nonlinear realization of the extended symmetry is constructed in the form maximally close to that of the Standard Model. The corresponding most general effective Lagrangian is built. A simplest linear realization of the extended symmetry in an extended fermion sector is found. The Higgs-Goldstone scenario of the electroweak symmetry breaking is outlined from the standpoint of the multi-TeV energy collider phenomenology.


Sign in / Sign up

Export Citation Format

Share Document