conformal symmetry
Recently Published Documents


TOTAL DOCUMENTS

558
(FIVE YEARS 119)

H-INDEX

41
(FIVE YEARS 4)

Particles ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 12-20
Author(s):  
R. K. Nesbet

The postulate of universal local Weyl scaling (conformal) symmetry modifies both general relativity and the Higgs scalar field model. The conformal Higgs model (CHM) acquires a cosmological effect that fits the observed accelerating Hubble expansion for redshifts z≤1 (7.33 Gyr) accurately with only one free constant parameter. Conformal gravity (CG) has recently been fitted to anomalous rotation data for 138 galaxies. Conformal theory explains dark energy and does not require dark matter, providing a viable alternative to the standard ΛCDM paradigm. The theory precludes a massive Higgs particle but validates a composite gauge field W2 with mass 125 GeV.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 501
Author(s):  
Stanislav Alexeyev ◽  
Daniil Krichevskiy ◽  
Boris Latosh

Validity of three gravity models with non-linear realization of conformal symmetry previously discussed in literature is addressed. Two models are found to be equivalent up to a change of coset coordinates. It was found that models contain ghost degrees of freedom that may be excluded by an introduction of an additional symmetry to the target space. One model found to be safe in early universe. The others found to lack spin-2 degrees of freedom and to have peculiar coupling to matter degrees of freedom.


Author(s):  
Pengming Zhang ◽  
Mahmut Elbistan ◽  
Peter A Horvathy

Abstract Bialynicki-Birula and Charzynski argued that a gravitational wave emitted during the merger of a black hole binary may be approximated by a circularly polarized wave which may in turn trap particles [1]. In this paper we consider particle motion in a class of gravitational waves which includes, besides circularly polarized periodic waves (CPP) [2], also the one proposed by Lukash [3] to study anisotropic cosmological models. Both waves have a 7-parameter conformal symmetry which contains, in addition to the generic 5-parameter (broken) Carroll group, also a 6th isometry. The Lukash spacetime can be transformed by a conformal rescaling of time to a perturbed CPP problem. Bounded geodesics, found both analytically and numerically, arise when the Lukash wave is of Bianchi type VI. Their symmetries can also be derived from the Lukash-CPP relation. Particle trapping is discussed.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 471
Author(s):  
Nicolas Boulanger ◽  
Fabien Buisseret ◽  
Guillaume Lhost

We first quantize an action proposed by Casalbuoni and Gomis in 2014 that describes two massless relativistic scalar particles interacting via a conformally invariant potential. The spectrum is a continuum of massive states that may be interpreted as unparticles. We then obtain in a similar way the mass operator for a deformed action in which two terms are introduced that break the conformal symmetry: a mass term and an extra position-dependent coupling constant. A simple Ansatz for the latter leads to a mass operator with linear confinement in terms of an effective string tension σ. The quantized model is confining when σ≠0 and its mass spectrum shows Regge trajectories. We propose a tensionless limit in which highly excited confined states reduce to (gapped) unparticles. Moreover, the low-lying confined bound states become massless in the latter limit as a sign of conformal symmetry restoration and the ratio between their masses and σ stays constant. The originality of our approach is that it applies to both confining and conformal phases via an effective interacting model.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
J. W. Jape ◽  
S. D. Maharaj ◽  
J. M. Sunzu ◽  
J. M. Mkenyeleye

AbstractWe generate a new generalized regular charged anisotropic exact model that admits conformal symmetry in static spherically symmetric spacetime. Our model was examined for physical acceptability as realistic stellar models. The regularity is not violated, the energy conditions are satisfied, the physical forces balanced at equilibrium, the stability is satisfied via adiabatic index, and the surface red shift and mass–radius ratio are within the required bounds. Our conformal charged anisotropic exact solution contains models generated by Finch–Skea, Vaidya–Tikekar and Schwarzschild. Also, some recent charged or neutral and anisotropic or isotropic conformally symmetric models are found as special cases of our exact model. Our approach using a conformal symmetry provides a generalized geometric framework for studying compact objects.


2021 ◽  
Vol 2021 (12) ◽  
pp. 005
Author(s):  
Jibril Ben Achour

Abstract It has been noticed that for a large class of cosmological models, the gauge fixing of the time-reparametrization invariance does not completely fix the clock. Instead, the system enjoys a surprising residual Noether symmetry under a Möbius reparametrization of the proper time, which maps gauge-inequivalent solutions to the Friedmann equations onto each other. In this work, we provide a unified treatment of this hidden conformal symmetry and its realization in the homogeneous and isotropic sector of the Einstein-Scalar-Λ system. We consider the flat Friedmann-Robertson-Walker (FRW) model, the (A)dS cosmology and provide a first treatment of the model with spatial constant curvature. We derive the general condition relating the choice of proper time and the conformal weight of the scale factor, and give a detailed analysis of the conserved Noether charges generating this physical symmetry. Our approach allows us to identify new realizations of this symmetry while recovering previous results in a unified manner. We also present the general mapping onto the conformal particle and discuss the solution-generating nature of the transformations beyond the Möbius symmetry. Finally, we show that, at least in a restricted context, this hidden conformal symmetry is intimately related to the Kodama charges of spherically symmetric gravity. This new connection suggests that the Möbius invariance of cosmology is only the corner of a larger symmetry structure which could be relevant beyond cosmological models.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 579
Author(s):  
Pengfei Zhang ◽  
Shao-Kai Jian ◽  
Chunxiao Liu ◽  
Xiao Chen

Recently, the steady states of non-unitary free fermion dynamics are found to exhibit novel critical phases with power-law squared correlations and a logarithmic subsystem entanglement. In this work, we theoretically understand the underlying physics by constructing solvable static/Brownian quadratic Sachdev-Ye-Kitaev chains with non-Hermitian dynamics. We find the action of the replicated system generally shows (one or infinite copies of) O(2)×O(2) symmetries, which is broken to O(2) by the saddle-point solution. This leads to an emergent conformal field theory of the Goldstone modes. We derive the effective action and obtain the universal critical behaviors of squared correlators. Furthermore, the entanglement entropy of a subsystem A with length LA corresponds to the energy of the half-vortex pair S∼ρslog⁡LA, where ρs is the total stiffness of the Goldstone modes. We also discuss special limits with more than one branch of Goldstone modes and comment on interaction effects.


2021 ◽  
pp. 205-222
Author(s):  
Manousos Markoutsakis
Keyword(s):  

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Fabrizio Canfora

AbstractAn infinite-dimensional family of analytic solutions in pure SU(2) Yang–Mills theory at finite density in $$(3+1)$$ ( 3 + 1 ) dimensions is constructed. It is labelled by two integeres (p and q) as well as by a two-dimensional free massless scalar field. The gauge field depends on all the 4 coordinates (to keep alive the topological charge) but in such a way to reduce the (3+1)-dimensional Yang–Mills field equations to the field equation of a 2D free massless scalar field. For each p and q, both the on-shell action and the energy-density reduce to the action and Hamiltonian of the corresponding 2D CFT. The topological charge density associated to the non-Abelian Chern–Simons current is non-zero. It is possible to define a non-linear composition within this family as if these configurations were “Lego blocks”. The non-linear effects of Yang–Mills theory manifest themselves since the topological charge density of the composition of two solutions is not the sum of the charge densities of the components. This leads to an upper bound on the amplitudes in order for the topological charge density to be well-defined. This suggests that if the temperature and/or the energy is/are high enough, the topological density of these configurations is not well-defined anymore. Semiclassically, one can show that (depending on whether the topological charge is even or odd) some of the operators appearing in the 2D CFT should be quantized as Fermions (despite the Bosonic nature of the classical field).


Sign in / Sign up

Export Citation Format

Share Document