scholarly journals PULSAR KICKS WITH STANDARD AND STERILE NEUTRINOS AND LANDAU LEVELS

2008 ◽  
Vol 23 (17n20) ◽  
pp. 1687-1694
Author(s):  
LEONARD S. KISSLINGER

I first give an update on our study of the energy asymmetry given the proto-neutron star during the time when the neutrino sphere is near the surface of the proto-neutron star, at a time 10-20s, using the modified URCA process. With the magnetic field strong enough for a large fraction of the electrons produced with the anti-neutrinos to be in the lowest Landau level, we predict a pulsar velocity of 1.03 × 10−4(T/1010K)7 km / s , which reaches 1000 km/s if T ≃ 9.96 × 1010 K . Also, using the recent results of the MiniBoone study, with two sterile neutrinos, I give results for pulsar kicks during the first 10s.

2007 ◽  
Vol 22 (25n28) ◽  
pp. 2071-2080 ◽  
Author(s):  
LEONARD S. KISSLINGER

We derive the energy asymmetry given the proto-neutron star during the time when the neutrino sphere is near the surface of the proto-neutron star, using the modified URCA process. The electrons produced with the anti-neutrinos are in Landau levels due to the strong magnetic field, and this leads to asymmetry in the neutrino momentum, and a pulsar kick. Our main prediction is that the large pulsar kicks start at about 10 s and last for about 10 s, with the corresponding neutrinos correlated in the direction of the magnetic field.


2002 ◽  
Vol 11 (09) ◽  
pp. 1505-1513
Author(s):  
ASHA GUPTA ◽  
V. K. GUPTA ◽  
S. SINGH ◽  
J. D. ANAND

We study the effect of the inclusion of muons and the muon neutrinos on the phase transition from nuclear to quark matter in a magnetized proto-neutron star and compare our results with those obtained by us without the muons. We find that the inclusion of muons changes slightly the nuclear density at which transition occurs. However the dependence of this transition density on various chemical potentials, temperature and the magnetic field remains quantitatively the same.


1994 ◽  
Vol 147 ◽  
pp. 591-595
Author(s):  
A.G. Muslimov ◽  
H.M. Van Horn

AbstractWe consider a simple model for the evolution of a poloidal magnetic field initally trapped in a region containing normal npe matter within the outerliquid core of a neutron star. We have performed numerical computations for neutron stars with masses of 1.4, 1.6, and 1.7 M⊙ that undergo very rapid cooling due to the direct Urca process. Because the timescale for the magnetic field decay is directly proportional to T2, such a cooling history produces a rapid decline in the magnetic-field strength B, even for B as low as ∼ 1012 G. In particular, we show that an initially quasi-homogeneous magnetic field of strength B = 1012 G declines during the first ∼ 1 Myr.


2012 ◽  
Vol 27 (37) ◽  
pp. 1250215 ◽  
Author(s):  
LEONARD S. KISSLINGER ◽  
MIKKEL B. JOHNSON

We calculate the momentum given to a proto-neutron star during the first 10 s after temperature equilibrium is reached, using recent evidence of sterile neutrinos and a measurement of the mixing angle. This is a continuation of an earlier estimate with a wide range of possible mixing angles. Using the new mixing angle we find that sterile neutrinos can account for the observed pulsar velocities.


2006 ◽  
Vol 18 (08) ◽  
pp. 913-934 ◽  
Author(s):  
TAKUYA MINE ◽  
YUJI NOMURA

We consider the magnetic Schrödinger operator on R2. The magnetic field is the sum of a homogeneous magnetic field and periodically varying pointlike magnetic fields on a lattice. We shall give a sufficient condition for each Landau level to be an infinitely degenerated eigenvalue. This condition is also necessary for the lowest Landau level. In the threshold case, we see that the spectrum near the lowest Landau level is purely absolutely continuous. Moreover, we shall give an estimate for the density of states for Landau levels and their gaps. The proof is based on the method of Geyler and Šťovíček, the magnetic Bloch theory, and canonical commutation relations.


Author(s):  
G. Gulyamov ◽  
U. I. Erkaboev ◽  
A. G. Gulyamov

The article considers the oscillations of interband magneto-optical absorption in semiconductors with the Kane dispersion law. We have compared the changes in oscillations of the joint density of states with respect to the photon energy for different Landau levels in parabolic and non-parabolic zones. An analytical expression is obtained for the oscillation of the combined density of states in narrow-gap semiconductors. We have calculated the dependence of the maximum photon energy on the magnetic field at different temperatures. A theoretical study of the band structure showed that the magnetoabsorption oscillations decrease with an increase in temperature, and the photon energies nonlinearly depend on a strong magnetic field. The article proposes a simple method for calculating the oscillation of joint density of states in a quantizing magnetic field with the non-quadratic dispersion law. The temperature dependence of the oscillations joint density of states in semiconductors with non-parabolic dispersion law is obtained. Moreover, the article studies the temperature dependence of the band gap in a strong magnetic field with the non-quadratic dispersion law. The method is applied to the research of the magnetic absorption in narrow-gap semiconductors with nonparabolic dispersion law. It is shown that as the temperature increases, Landau levels are washed away due to thermal broadening and density of states turns into a density of states without a magnetic field. Using the mathematical model, the temperature dependence of the density distribution of energy states in strong magnetic fields is considered. It is shown that the continuous spectrum of the density of states, measured at the temperature of liquid nitrogen, at low temperatures turns into discrete Landau levels. Mathematical modeling of processes using experimental values of the continuous spectrum of the density of states makes it possible to calculate discrete Landau levels. We have created the three-dimensional fan chart of magneto optical oscillations of semiconductors with considering for the joint density of energy states. For a nonquadratic dispersion law, the maximum frequency of the absorbed light and the width of the forbidden band are shown to depend nonlinearly on the magnetic field. Modeling the temperature  dependence allowed us to determine the Landau levels in semiconductors in a wide temperature spectrum. Using the proposed model, the experimental results obtained for narrow-gap semiconductors are analyzed. The theoretical results are compared with experimental results.


Author(s):  
Masamitsu Mori ◽  
Yudai Suwa ◽  
Ken’ichiro Nakazato ◽  
Kohsuke Sumiyoshi ◽  
Masayuki Harada ◽  
...  

Abstract Massive stars can explode as supernovae at the end of their life cycle, releasing neutrinos whose total energy reaches 1053erg. Moreover, neutrinos play key roles in supernovae, heating and reviving the shock wave as well as cooling the resulting proto-neutron star. Therefore, neutrino detectors are waiting to observe the next galactic supernova and several theoretical simulations of supernova neutrinos are underway. While these simulation concentrate mainly on only the first one second after the supernova bounce, the only observation of a supernova with neutrinos, SN 1987A, revealed that neutrino emission lasts for more than 10 seconds. For this reason, long-time simulation and analysis tools are needed to compare theories with the next observation. Our study is to develop an integrated supernova analysis framework to prepare an analysis pipeline for treating galactic supernovae observations in the near future. This framework deals with the core-collapse, bounce and proto-neutron star cooling processes, as well as with neutrino detection on earth in a consistent manner. We have developed a new long-time supernova simulation in one dimension that explodes successfully and computes the neutrino emission for up to 20 seconds. Using this model we estimate the resulting neutrino signal in the Super-Kamiokande detector to be about 1,800 events for an explosion at 10 kpc and discuss its implications in this paper. We compare this result with the SN 1987A observation to test its reliability.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850083 ◽  
Author(s):  
Ritam Mallick ◽  
Amit Singh

In this paper, we present the effect of a strong magnetic field in the burning of a neutron star (NS). We have used relativistic magneto-hydrostatic (MHS) conservation equations for studying the PT from nuclear matter (NM) to quark matter (QM). We found that the shock-induced phase transition (PT) is likely if the density of the star core is more than three times nuclear saturation ([Formula: see text]) density. The conversion process from NS to quark star (QS) is found to be an exothermic process beyond such densities. The burning process at the star center most likely starts as a deflagration process. However, there can be a small window at lower densities where the process can be a detonation one. At small enough infalling matter velocities the resultant magnetic field of the QS is lower than that of the NS. However, for a higher value of infalling matter velocities, the magnetic field of QM becomes larger. Therefore, depending on the initial density fluctuation and on whether the PT is a violent one or not the QS could be more magnetic or less magnetic. The PT also have a considerable effect on the tilt of the magnetic axis of the star. For smaller velocities and densities the magnetic angle are not affected much but for higher infalling velocities tilt of the magnetic axis changes suddenly. The magnetic field strength and the change in the tilt axis can have a significant effect on the observational aspect of the magnetars.


2013 ◽  
Vol 44 (11) ◽  
pp. 2389
Author(s):  
M. Pieńkos

Sign in / Sign up

Export Citation Format

Share Document