temperature equilibrium
Recently Published Documents


TOTAL DOCUMENTS

174
(FIVE YEARS 14)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 37 (2) ◽  
pp. 302-307
Author(s):  
Abdulrahman G. Alhamzan

In this study date pits of two types of date-palm trees (Phoenix Dactylifera L.), in Saudi Arabia were used as bio-sorbents for heavy metals (e.g. lead and copper) from aqueous solutions. Investigation of equilibrium time and the effect of different concentrations of metals were performed. Adsorption capacity of bio-sorbents increased when increasing concentration of metal ions. Maximum adsorption capacity at room temperature of Sukary date pits was 17.53 mg g-1 and 9.86 mg g-1 for lead and copper ions, respectively. Whereas, Khlass date pits showed maximum adsorption capacity at 14.1 mg g-1 and 7.91 mg g-1 for lead and copper ions, respectively at room temperature. Equilibrium isotherm models, (Langmuir and Freundlich models), were used for analysis of equilibrium experimental results. these models describe the experimental data well.


Author(s):  
Shuqiang Guo ◽  
Li Ren ◽  
Ying Xu ◽  
Yuan Yuan Li ◽  
Jing Shi ◽  
...  

Author(s):  
Y.J. Ji ◽  
◽  
X. Li ◽  

The salt expansion disease is serious for the soil containing sodium sulfate in cold regions. This paper carried out one-dimensional swelling tests of saline soil, and numerical cooling tests of soil to explore the stability time of salt swelling deformation and determine the standard procedure of the salt swelling test method. The test results demonstrate that: (A) the temperature equilibrium and crystallization process are almost completed simultaneously in the one-dimensional (1D) salt expansion test; (B) Referring to the standard of consolidation test, a standard that the expansion rate is less than 0.02mm/h can be used in the salt expansion test; (C) The required time for temperature equilibrium of soil is quadratic to sample size and is much faster with liquid bath condition comparing to gas bath condition. Because the deformation and temperature are synchronized, the deformation stabilization time of different size samples in different cooling media is recommended.This can provide a reference for the deformation equilibrium time of the salt swelling test.


2020 ◽  
Vol 9 (6) ◽  
Author(s):  
Etienne Granet ◽  
Fabian Essler

We introduce a framework for calculating dynamical correlations in the Lieb-Liniger model in arbitrary energy eigenstates and for all space and time, that combines a Lehmann representation with a 1/c1/c expansion. The n^\mathrm{th}nth term of the expansion is of order 1/c^n1/cn and takes into account all \lfloor \tfrac{n}{2}\rfloor+1⌊n2⌋+1 particle-hole excitations over the averaging eigenstate. Importantly, in contrast to a "bare" 1/c1/c expansion it is uniform in space and time. The framework is based on a method for taking the thermodynamic limit of sums of form factors that exhibit non integrable singularities. We expect our framework to be applicable to any local operator. We determine the first three terms of this expansion and obtain an explicit expression for the density-density dynamical correlations and the dynamical structure factor at order 1/c^21/c2. We apply these to finite-temperature equilibrium states and non-equilibrium steady states after quantum quenches. We recover predictions of (nonlinear) Luttinger liquid theory and generalized hydrodynamics in the appropriate limits, and are able to compute sub-leading corrections to these.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ben Sieren ◽  
Jessica Baker ◽  
Xisen Wang ◽  
Samuel J. Rozzoni ◽  
Kristen Carlson ◽  
...  

The increased use of color dyes in industry imposes a great threat to the environment. As such, developing cost-effective techniques for dye removal from wastewater attracted great attention. Earth materials, particularly those with large specific surface area (SSA) and high cation exchange capacity (CEC), were evaluated for their potential use for wastewater treatment. In this study, palygorskite, sepiolite, and clinoptilolite were evaluated for their removal of cationic dyes using safranin O (SO+) as a model compound. The CEC values of the materials played a key role in SO+ removal while other physicochemical conditions, such as temperature, equilibrium solution pH, and ionic strength, had less influence on SO+ removal. Sorbed SO+ cations were limited to the external surfaces of the minerals, as their channel sizes are less than the size of SO+ cation. Molecular dynamic simulations showed dense monolayer SO+ uptake on palygorskite due to its relatively large CEC value. In contrast, loosely packed monomer SO+ uptake was adopted on sepiolite for its large SSA and low CEC. Dense multilayers or admicelles of SO+ formed on zeolite surfaces. As such, for the best SO removal, palygorskite is better than sepiolite, though both are fibrous clay minerals.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1001
Author(s):  
Lakshmi Prasanna Lingamdinne ◽  
Janardhan Reddy Koduru ◽  
Yoon-Young Chang ◽  
Seon-Hong Kang ◽  
Jae-Kyu Yang

This study synthesized lanthanum oxide (La2O3) nanorods to develop a practical approach for the removal of arsenic from groundwater. La2O3 nanorods were synthesized by a simple hydrothermal process followed by calcination at 500 °C and were characterized by spectroscopic and microscopic techniques. To evaluate the adsorption mechanism of La2O3 nanorods, adsorption parameters including solution pH, temperature, equilibrium isotherms, and kinetics for arsenic were studied. The results suggested that the arsenic uptake was a rate-limiting, monolayer adsorption interaction on the La2O3 nanorods homogeneous surface. In addition, it was found that the adsorptive removal behavior of La2O3 for As(V) was sensitive to the initial pH and temperature, and the maximum uptake amount of as prepared La2O3 was found to be 260.56 mg/g of As(V) at pH 6.0 and 25 °C. Furthermore, the uptake capacity of La2O3 nanorods for As(V) increased with temperature. The resultant thermodynamic parameters (ΔG0, ΔH0, and ΔS0) suggested an endothermic adsorption of As(V) on La2O3. The adsorption capacity of La2O3 was higher than that of several reported nanocomposites, suggesting its practical applicability and novelty for As-contaminated wastewater treatment.


2020 ◽  
Vol 61 (5) ◽  
pp. 712-717
Author(s):  
Hiraku Fuse ◽  
Tatsuya Fujisaki ◽  
Shinji Abe ◽  
Kenji Yasue ◽  
Satoshi Oyama

Abstract In this study, we propose a methodology for temperature determination of the temperature and pressure correction factor, PTP, by analyzing the temperature distribution of the modeled ionization chamber taking into account the thermal effect of a water phantom on neighboring materials in the process. Additionally, we present an appropriate temperature-equilibrium time for conducting measurements. The temporal response in the cavity is acquired at 20-s intervals using a Farmer ionization chamber and an electrometer. The initial temperature of the water phantom is 20–25°C with continuous heating/cooling. The temporal response is measured until temperature equilibrium is confirmed, specifically when a temperature difference of 1–5°C is observed between the ionization chamber and the water phantom. Using an ionization-chamber model, temperature distribution is simulated between 20 and 25°C with various parameters set to receive heating and cooling from surrounding media. The results suggest that the temporal response of the ionization chamber essentially coincides with the temperature change at the tip and middle; moreover, the predicted temperature change for temporal response and the simulated temperature of water are different by ~0.16°C at the tip and ~0.79°C at the bottom. Overall, the temperature-equilibration time for absorbed dosimetry is affected by two factors: the cavity wall and the stem side of the cavity; moreover, 400 s is required to obtain complete temperature equilibrium in the water phantom. This analytical study supports the experimental value obtained in previous research. Therefore, analytical representation of the temperature distribution in the ionization chamber is possible.


2020 ◽  
Vol 493 (2) ◽  
pp. 2632-2651 ◽  
Author(s):  
Scott Tremaine

ABSTRACT Supermassive black holes at the centres of galaxies are often surrounded by dense star clusters. For a wide range of cluster properties and orbital radii the resonant relaxation times in these clusters are much shorter than the Hubble time. Since resonant relaxation conserves semimajor axes, these clusters should be in the maximum-entropy state consistent with the given semimajor axis distribution. We determine these maximum-entropy equilibria in a simplified model in which all of the stars have the same semimajor axes. We find that the cluster exhibits a phase transition from a disordered, spherical, high-temperature equilibrium to an ordered low-temperature equilibrium in which the stellar orbits have a preferred orientation or line of apsides. Here ‘temperature’ is a measure of the non-Keplerian or self-gravitational energy of the cluster; in the spherical state, temperature is a function of the rms eccentricity of the stars. We explore a simple two-parameter model of black hole star clusters – the two parameters are semimajor axis and black hole mass – and find that clusters are susceptible to the lopsided phase transition over a range of ∼102 in semimajor axis, mostly for black hole masses $\lesssim 10^{7.5}\, \mathrm{M}_{\odot }$.


Sign in / Sign up

Export Citation Format

Share Document