scholarly journals MAPPING CLASS GROUP AND U(1) CHERN–SIMONS THEORY ON CLOSED ORIENTABLE SURFACES

2012 ◽  
Vol 27 (15) ◽  
pp. 1250087 ◽  
Author(s):  
SI CHEN

U(1) Chern–Simons theory is quantized canonically on manifolds of the form [Formula: see text], where Σ is a closed orientable surface. In particular, we investigate the role of mapping class group of Σ in the process of quantization. We show that, by requiring the quantum states to form representation of the holonomy group and the large gauge transformation group, both of which are deformed by quantum effect, the mapping class group can be consistently represented, provided the Chern–Simons parameter k satisfies an interesting quantization condition. The representations of all the discrete groups are unique, up to an arbitrary sub-representation of the mapping class group. Also, we find a k↔1/k duality of the representations.

2020 ◽  
Vol 71 (2) ◽  
pp. 539-555
Author(s):  
Miguel A Maldonado ◽  
Miguel A Xicoténcatl

Abstract The mapping class group $\Gamma ^k(N_g)$ of a non-orientable surface with punctures is studied via classical homotopy theory of configuration spaces. In particular, we obtain a non-orientable version of the Birman exact sequence. In the case of ${\mathbb{R}} \textrm{P}^2$, we analyze the Serre spectral sequence of a fiber bundle $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k \to X_k \to BSO(3)$ where $X_k$ is a $K(\Gamma ^k({\mathbb{R}} \textrm{P}^2),1)$ and $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$ denotes the configuration space of unordered $k$-tuples of distinct points in ${\mathbb{R}} \textrm{P}^2$. As a consequence, we express the mod-2 cohomology of $\Gamma ^k({\mathbb{R}} \textrm{P}^2)$ in terms of that of $F_k({\mathbb{R}}{\textrm{P}}^{2}) / \Sigma _k$.


2020 ◽  
pp. 1-15
Author(s):  
WILLIAM M. GOLDMAN ◽  
SEAN LAWTON ◽  
EUGENE Z. XIA

Let $\unicode[STIX]{x1D6F4}$ be a compact orientable surface of genus $g=1$ with $n=1$ boundary component. The mapping class group $\unicode[STIX]{x1D6E4}$ of $\unicode[STIX]{x1D6F4}$ acts on the $\mathsf{SU}(3)$ -character variety of $\unicode[STIX]{x1D6F4}$ . We show that the action is ergodic with respect to the natural symplectic measure on the character variety.


Author(s):  
Leah Childers ◽  
Dan Margalit

This chapter considers the mapping class group, the group of symmetries of a surface, and some of its basic properties. It first provides an overview of surfaces and the concept of homeomorphism before giving examples of homeomorphisms and defining the mapping class group as a certain quotient of the group of homeomorphisms of a surface. It then looks at Dehn twists and describes some of the relations they satisfy. It also presents a theorem stating that the mapping class group of a compact orientable surface is generated by Dehn twists and proves it. It concludes with some projects and open problems. The discussion also includes various exercises.


2014 ◽  
Vol 157 (2) ◽  
pp. 345-355
Author(s):  
SUSUMU HIROSE ◽  
MASATOSHI SATO

AbstractWe construct a minimal generating set of the level 2 mapping class group of a nonorientable surface of genus g, and determine its abelianization for g ≥ 4.


2016 ◽  
Vol 25 (05) ◽  
pp. 1650022
Author(s):  
Byung Hee An

In this paper, we compute the automorphism groups [Formula: see text] and [Formula: see text] of braid groups [Formula: see text] and [Formula: see text] on every orientable surface [Formula: see text], which are isomorphic to group extensions of the extended mapping class group [Formula: see text] by the transvection subgroup except for a few cases. We also prove that [Formula: see text] is always a characteristic subgroup of [Formula: see text], unless [Formula: see text] is a twice-punctured sphere and [Formula: see text].


1994 ◽  
Vol 03 (04) ◽  
pp. 547-574 ◽  
Author(s):  
GRETCHEN WRIGHT

The Reshetikhin-Turaev representation of the mapping class group of an orientable surface is computed explicitly in the case r = 4. It is then shown that the restriction of this representation to the Torelli group is equal to the sum of the Birman-Craggs homomorphisms. The proof makes use of an explicit correspondence between the basis vectors of the representation space, and the Z/2Z-quadratic forms on the first homology of the surface. This result corresponds to the fact, shown by Kirby and Melvin, that the three-manifold invariant when r = 4 is related to spin structures on the associated four-manifold.


Sign in / Sign up

Export Citation Format

Share Document