scholarly journals Numerical study of the SWKB condition of novel classes of exactly solvable systems

2020 ◽  
pp. 2150025
Author(s):  
Yuta Nasuda ◽  
Nobuyuki Sawado

The supersymmetric WKB (SWKB) condition is supposed to be exact for all known exactly solvable quantum mechanical systems with the shape invariance. Recently, it was claimed that the SWKB condition was not exact for the extended radial oscillator, whose eigenfunctions consisted of the exceptional orthogonal polynomial, even the system possesses the shape invariance. In this paper, we examine the SWKB condition for the two novel classes of exactly solvable systems: one has the multi-indexed Laguerre and Jacobi polynomials as the main parts of the eigenfunctions, and the other has the Krein–Adler Hermite, Laguerre and Jacobi polynomials. For all of them, one can always remove the [Formula: see text]-dependency from the condition, and it is satisfied with a certain degree of accuracy.

2012 ◽  
Vol 27 (19) ◽  
pp. 1250102 ◽  
Author(s):  
TOSHIAKI TANAKA

We formulate [Formula: see text]-fold supersymmetry in quantum mechanical systems with reflection operators. As in the cases of other systems, they possess the two significant characters of [Formula: see text]-fold supersymmetry, namely, almost isospectrality and weak quasi-solvability. We construct explicitly the most general one- and two-fold supersymmetric quantum mechanical systems with reflections. In the case of [Formula: see text], we find that there are seven inequivalent such systems, three of which are characterized by three arbitrary functions having definite parity while the other four characterized by two arbitrary functions. In addition, four of the seven inequivalent systems do not reduce to ordinary quantum systems without reflections. Furthermore, in certain particular cases, they are essentially equivalent to the most general two-by-two Hermitian matrix two-fold supersymmetric quantum systems obtained previously by us.


Sign in / Sign up

Export Citation Format

Share Document