scholarly journals HIGH ENERGY PHOTON–PHOTON COLLISIONS AT A LINEAR COLLIDER

2005 ◽  
Vol 20 (31) ◽  
pp. 7306-7332 ◽  
Author(s):  
STANLEY J. BRODSKY

High intensity back-scattered laser beams will allow the efficient conversion of a substantial fraction of the incident lepton energy into high energy photons, thus significantly extending the physics capabilities of an e-e± linear collider. The annihilation of two photons produces C = + final states in virtually all angular momentum states. An important physics measurement is the measurement of the Higgs coupling to two photons. The annihilation of polarized photons into the Higgs boson determines its fundamental H0γγ coupling as well as determining its parity. Other novel two-photon processes include the two-photon production of charged pairs τ+τ-, W+W-, [Formula: see text], and supersymmetric squark and slepton pairs. The one-loop box diagram leads to the production of pairs of neutral particles such as γγ → Z0Z0, γZ0, and γγ. At the next order one can study Higgstrahlung processes, such as γγ → W+W-W-H. Since each photon can be resolved into a W+W- pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying possibly anomalous WW collisions and annihilation. In the case of QCD, each photon can materialize as a quark anti-quark pair which interact via multiple gluon exchange. The diffractive channels in photon-photon collisions allow a novel look at the QCD pomeron and odderon. The C = - odderon exchange contribution can be identified by looking at the heavy quark asymmetry. In the case of eγ → e′ collisions, one can measure the photon structure functions and its various components. Exclusive hadron production processes in photon-photon collisions provide important tests of QCD at the amplitude level, particularly as measures of hadron distribution amplitudes which are also important for the analysis of exclusive semi-leptonic and two-body hadronic B-decays.

1996 ◽  
Vol 11 (09) ◽  
pp. 1637-1644 ◽  
Author(s):  
DANIEL A. BAUER

New developments in linear collider and laser technology should soon make it possible to construct a Photon Linear Collider, where high energy photon beams, produced by Compton backscattering laser photons off linac electrons, are brought into collision with electron beams or with other photon beams. High luminosities, along with control over both the energy distribution and polarization of the photon beams, will give such a facility the potential for a very interesting physics program. In particular, a Photon Linear Collider offers a unique environment for the study of Higgs bosons and discovery of new particles such as excited electron states, supersymmetric particles, heavy charged particle pairs, or any particles with appreciable two-photon couplings. Precision electroweak tests also benefit from such a machine, allowing a test of the three-gauge-boson WWγ vertex. The Photon Linear Collider would serve as an excellent laboratory for Quantum Chromodynamics studies involving photon structure functions, jet and hadron production, and resonance production.


1986 ◽  
Author(s):  
B.J. Mijnheer ◽  
A.H.L. Aalbers ◽  
J.J.M. Van Gasteren ◽  
A.G. Visser ◽  
F.W. Wittkämper

2020 ◽  
Vol 65 (19) ◽  
pp. 195006
Author(s):  
David J Eaton ◽  
Graham Bass ◽  
Paul Booker ◽  
John Byrne ◽  
Simon Duane ◽  
...  

2005 ◽  
Vol 76 ◽  
pp. S195
Author(s):  
J. Cygler ◽  
A. Saoudi ◽  
C. Lambert ◽  
A. Hallil ◽  
M. Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document