photon beams
Recently Published Documents


TOTAL DOCUMENTS

1364
(FIVE YEARS 159)

H-INDEX

64
(FIVE YEARS 5)

2022 ◽  
Vol 94 ◽  
pp. 17-23
Author(s):  
Mohamad Alissa ◽  
Klemens Zink ◽  
Frédéric Tessier ◽  
Andreas A. Schoenfeld ◽  
Damian Czarnecki

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261042
Author(s):  
Xiao-Jun Li ◽  
Yan-Cheng Ye ◽  
Yan-Shan Zhang ◽  
Jia-Ming Wu

Introduction This study presents an empirical method to model the high-energy photon beam percent depth dose (PDD) curve by using the home-generated buildup function and tail function (buildup-tail function) in radiation therapy. The modeling parameters n and μ of buildup-tail function can be used to characterize the Collimator Scatter Factor (Sc) either in a square field or in the different individual upper jaw and lower jaw setting separately for individual monitor unit check. Methods and materials The PDD curves for four high-energy photon beams were modeled by the buildup and tail function in this study. The buildup function was a quadratic function in the form of dd2+n with the main parameter of d (depth in water) and n, while the tail function was in the form of e−μd and was composed by an exponential function with the main parameter of d and μ. The PDD was the product of buildup and tail function, PDD = dd2+n·e−μd. The PDD of four-photon energies was characterized by the buildup-tail function by adjusting the parameters n and μ. The Sc of 6 MV and 10 MV can then be expressed simply by the modeling parameters n and μ. Results The main parameters n increases in buildup-tail function when photon energy increased. The physical meaning of the parameter n expresses the beam hardening of photon energy in PDD. The fitting results of parameters n in the buildup function are 0.17, 0.208, 0.495, 1.2 of four-photon energies, 4 MV, 6 MV, 10 MV, 18 MV, respectively. The parameter μ can be treated as attenuation coefficient in tail function and decreases when photon energy increased. The fitting results of parameters μ in the tail function are 0.065, 0.0515, 0.0458, 0.0422 of four-photon energies, 4 MV, 6 MV, 10 MV, 18 MV, respectively. The values of n and μ obtained from the fitted buildup-tail function were applied into an analytical formula of Sc = nE(S)0.63μE to get the collimator to scatter factor Sc for 6 and 10 MV photon beam, while nE, μE, S denotes n, μ at photon energy E of field size S, respectively. The calculated Sc were compared with the measured data and showed agreement at different field sizes to within ±1.5%. Conclusions We proposed a model incorporating a two-parameter formula which can improve the fitting accuracy to be better than 1.5% maximum error for describing the PDD in different photon energies used in clinical setting. This model can be used to parameterize the Sc factors for some clinical requirements. The modeling parameters n and μ can be used to predict the Sc in either square field or individual jaws opening asymmetrically for treatment monitor unit double-check in dose calculation. The technique developed in this study can also be used for systematic or random errors in the QA program, thus improves the clinical dose computation accuracy for patient treatment.


2021 ◽  
Vol 11 (24) ◽  
pp. 11896
Author(s):  
Bonghoon Oh ◽  
Jinjoo Ko ◽  
Jaeyu Lee ◽  
Gyeongsu Jang ◽  
Seunghwan Shin

Fourth-generation storage rings (4GSRs) that exploit the multi-bend achromat lattice concept may be able to surpass the brightness and coherence that are attained using the present third-generation storage rings. This paper presents the characteristics of photon beams and an analysis of their coherence properties in Korea-4GSR to represent 4GSRs.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 108
Author(s):  
Alexei V. Meremianin ◽  
Nikolai L. Manakov

The polarization dependence of the photoionization probability was analyzed in the case when a randomly oriented atom is irradiated by two crossing polarized monochromatic photon beams with the same frequency. It was found that the angular distributions of photoelectrons exhibit the effect of circular dichroism (CD), which consists of the dependence of the photoionization probability on the sign of the circular polarization degree of each beam. We demonstrate that the CD effect exists only for coherent crossing photon beams. It was shown that CD effects are strongly dependent on the phase difference between the electric field vectors of the photon beams and have a quite large magnitude. The possibilities of the experimental observation of CD effects are discussed.


2021 ◽  
Vol 22 (12) ◽  
pp. 3883-3888
Author(s):  
Aswathi Raj ◽  
D Khanna ◽  
Hridya VT ◽  
Sathish Padmanabhan ◽  
P Mohandass

Author(s):  
Sumalee Yabsantia ◽  
Sivalee Suriyapee ◽  
Nakorn Phaisangittisakul ◽  
Sornjarod Oonsiri ◽  
Taweap Sanghangthum ◽  
...  

Abstract Introduction: This study aims to experimentally determine field output factors using the methodologies suggested by the IAEA-AAPM TRS-483 for small field dosimetry and compare with the calculation from Monte Carlo (MC) simulation. Methods: The IBA-CC01, Sun Nuclear EDGE and IBA-SFD detectors were employed to determine the uncorrected and the corrected field output factors for 6 MV photon beams. Measurements were performed at 100 cm source to axis distance, 10 cm depth in water, and the field sizes ranged from 1 × 1 to 10 × 10 cm2. The use of field output correction factors proposed by the TRS-483 was utilised to determine field output factors. The measured field output factors were compared to that calculated using the egs_chamber user code. Results: The decrease in the percentage standard deviation of the measured three detectors was observed after applying the field output correction factors. Measured field output factors using CC01 and EDGE detectors agreed with MC values within 3% for field sizes down to 1 × 1 cm2, except the SFD detector. Conclusions: The corrected field output factors agree with the calculation from MC, except the SFD detector. CC01 and EDGE are suitable for determining field output factors, while the SFD may need more implementation of the intermediate field method.


2021 ◽  
Vol 22 (23) ◽  
pp. 12709
Author(s):  
Alessandra Palma ◽  
Sveva Grande ◽  
Anna Maria Luciani ◽  
Lucia Ricci-Vitiani ◽  
Mariachiara Buccarelli ◽  
...  

Glioblastoma multiforme is a malignant primary brain tumor with a poor prognosis and high rates of chemo-radiotherapy failure, mainly due to a small cell fraction with stem-like properties (GSCs). The mechanisms underlying GSC response to radiation need to be elucidated to enhance sensitivity to treatments and to develop new therapeutic strategies. In a previous study, two GSC lines, named line #1 and line #83, responded differently to carbon ions and photon beams, with the differences likely attributable to their own different metabolic fingerprint rather than to radiation type. Data from the literature showed the capability of RHPS4, a G-quadruplex stabilizing ligand, to sensitize the glioblastoma radioresistant U251MG cells to X-rays. The combined metabolic effect of ligand #190, a new RHPS4-derivative showing reduced cardiotoxicity, and a photon beam has been monitored by magnetic resonance (MR) spectroscopy for the two GSC lines, #1 and #83, to reveal whether a synergistic response occurs. MR spectra from both lines were affected by single and combined treatments, but the variations of the analysed metabolites were statistically significant mainly in line #1, without synergistic effects due to combination. The multivariate analysis of ten metabolites shows a separation between control and treated samples in line #1 regardless of treatment type, while separation was not detected in line #83.


2021 ◽  
Vol 91 (3) ◽  
pp. 102-113
Author(s):  
M. P. Shatenok ◽  
A. N. Moiseev ◽  
K. V. Tolkachev ◽  
S. A. Ryghov ◽  
Yu. V. Drughinina ◽  
...  

The CDT guidelines on external dosimetry audit of linear accelerators x-ray beams absolute calibration is described. The guidelines specify audits organization, conduction and results analysis for 4-20 MeV photon beams, including measurement methodology, equipment and staff specification. The guidelines are designed for medical physicists, dosimetrists and management of external beam radiotherapy departments.


Sign in / Sign up

Export Citation Format

Share Document