GEANT4 SIMULATION FOR THE ZENITH ANGLE DEPENDENCE OF COSMIC MUON INTENSITIES AT TWO DIFFERENT GEOMAGNETIC LOCATIONS

2013 ◽  
Vol 28 (16) ◽  
pp. 1350071 ◽  
Author(s):  
HALIL ARSLAN ◽  
MEHMET BEKTASOGLU

The zenith angle dependence of cosmic muon flux at sea level in the western, eastern, southern and northern azimuths have been investigated separately for Calcutta, India and Melbourne, Australia for muon momenta up to ~500 GeV /c using Geant4 simulation package. These two locations were selected due to the fact that they significantly differ in geomagnetic cutoff rigidity. The exponent n, which is defined by the relation I(θ) = I(0°) cos nθ, was obtained for each azimuth in Calcutta and Melbourne. By acquiring an agreement between the simulation results and the experimental ones, the simulation study was extended for different azimuth angles and higher muon momenta. It was shown that the angular dependence of the cosmic muon intensity decreases with the increase of muon momentum at both locations. Moreover, the exponent becomes independent of both geomagnetic location and the azimuth angle for muons with momentum above 10 GeV /c, and it is nearly zero above 50 GeV /c. Therefore, it can be concluded that the cosmic muons with momenta between 50 GeV /c and ~500 GeV /c reach the sea level almost isotropically.

1976 ◽  
Vol 54 (18) ◽  
pp. 1880-1883 ◽  
Author(s):  
Deba Prasad Bhattacharyya

The pion and kaon spectra in the top of the atmosphere have been derived from the satellite data of cosmic ray nucleons by using the Bose-type distribution of secondary mesons produced in the inclusive reactions p + p → π− + X and p + p → K− + X. The derived pion and kaon spectra follow the relations of the form π(Eπ) dEπ = 0.184Eπ−2.6 dEπ and K(Ek) dEk = 0.036 Ek−2.6 dEk. With the help of the diffusion equation for pions and kaons in the atmosphere, the sea level muon spectrum has been derived and the results have been compared with the magnetic spectrograph data of Allkofer, Carstensen, and Dau in the muon momentum range 15–1000 GeV/c. The sea level muon intensity arising from kaon parentage increases with energy.


2018 ◽  
Vol 36 (1) ◽  
pp. 275-285 ◽  
Author(s):  
Enrique G. Cordaro ◽  
Patricio Venegas ◽  
David Laroze

Abstract. We present a different view of secular variation of the Earth's magnetic field, through the variations in the threshold rigidity known as the variation rate of geomagnetic cutoff rigidity (VRc). As the geomagnetic cutoff rigidity (Rc) lets us differentiate between charged particle trajectories arriving at the Earth and the Earth's magnetic field, we used the VRc to look for internal variations in the latter, close to the 70° south meridian. Due to the fact that the empirical data of total magnetic field BF and vertical magnetic field Bz obtained at Putre (OP) and Los Cerrillos (OLC) stations are consistent with the displacement of the South Atlantic magnetic anomaly (SAMA), we detected that the VRc does not fully correlate to SAMA in central Chile. Besides, the lower section of VRc seems to correlate perfectly with important geological features, like the flat slab in the active Chilean convergent margin. Based on this, we next focused our attention on the empirical variations of the vertical component of the magnetic field Bz, recorded in OP prior to the Maule earthquake in 2010, which occurred in the middle of the Chilean flat slab. We found a jump in Bz values and main frequencies from 3.510 to 5.860 µHz, in the second derivative of Bz, which corresponds to similar magnetic behavior found by other research groups, but at lower frequency ranges. Then, we extended this analysis to other relevant subduction seismic events, like Sumatra in 2004 and Tohoku in 2011, using data from the Guam station. Similar records and the main frequencies before each event were found. Thus, these results seem to show that magnetic anomalies recorded on different timescales, as VRc (decades) and Bz (days), may correlate with some geological events, as the lithosphere–atmosphere–ionosphere coupling (LAIC).


1980 ◽  
Vol 33 (3) ◽  
pp. 607 ◽  
Author(s):  
RW Clay ◽  
GJ Thornton

The attenuation of extensive air showers has been studied using atmospheric Cerenkov techniques. Observations over a range of zenith angles are correlated and an attenuation length of 234 � 38 g cm ? 2 obtained for showers with sea-level sizes of ~ 106 ?


2018 ◽  
Vol 81 (3) ◽  
pp. 396-400
Author(s):  
G. N. Kichigin ◽  
M. V. Kravtsova ◽  
V. E. Sdobnov

Pramana ◽  
2013 ◽  
Vol 80 (5) ◽  
pp. 837-846 ◽  
Author(s):  
MEHMET BEKTASOGLU ◽  
HALIL ARSLAN

Sign in / Sign up

Export Citation Format

Share Document