flat slab
Recently Published Documents


TOTAL DOCUMENTS

591
(FIVE YEARS 217)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 577 ◽  
pp. 117242
Author(s):  
T.S. Waldien ◽  
R.O. Lease ◽  
S.M. Roeske ◽  
J.A. Benowitz ◽  
P.B. O'Sullivan

2021 ◽  
Vol 30 (4) ◽  
Author(s):  
Simona Šarvaicová ◽  
Viktor Borzovič

The paper deals with the loading test results of an experimental reinforced concrete flat slab fragment, which was supported by an elongated rectangular column. The slab specimens were 200 mm thick and were designed without any shear reinforcement. By experimentally obtained punching shear resistance, the accuracy of the standard design models for prediction punching resistance was compared. The results of the experiments were also compared with the results of a numerical non-linear analysis performed in the Atena program.


Geosphere ◽  
2021 ◽  
Author(s):  
Xiaowen Liu ◽  
Claire A. Currie ◽  
Lara S. Wagner

Most flat-slab subduction regions are marked by an absence of arc volcanism, which is consistent with closure of the hot mantle wedge as the subducting plate flattens below the continent. Farther inland, low surface heat flow is observed, which is generally attributed to cooling of the continent by the underlying flat slab. However, modern flat slabs have only been in place for <20 Ma, and it is unclear whether there has been sufficient time for cooling to occur. We use numerical models to assess temporal variations in continental thermal structure during flat-slab subduction. Our models show that the flat slab leads to continental cooling on timescales of tens of millions of years. Cool slab temperatures must diffuse through the continental lithosphere, resulting in a delay between slab emplacement and surface cooling. Therefore, the timescales primarily depend on the flat-slab depth with shallower slabs resulting in shorter timescales. The magnitude of cooling increases for a shallow or long-lived flat slab, old subducting plate, and fast convergence rates. For regions with flat slabs at 45–70 km depth (e.g., Mexico and Peru), shallow continental cooling initiates 5–10 Ma after slab emplacement, and low surface heat flow in these regions is largely explained by the presence of the flat slab. However, for the Pampean region in Chile, with an ~100-km-deep slab, our models predict that conductive cooling has not yet affected the surface heat flow. The low heat flow observed requires additional processes such as advective cooling from the infiltration of fluids released through dehydration of the flat slab.


Geosphere ◽  
2021 ◽  
Author(s):  
Jeffrey M. Trop ◽  
Jeff A. Benowitz ◽  
Carl S. Kirby ◽  
Matthew E. Brueseke

The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012056
Author(s):  
D Čereš ◽  
K Gajdošová

Abstract Research in this paper presents a theoretical study of increasing in punching shear capacity of the strengthened flat slab by concrete overlay. The parametric study is based on comparison of three different relevant standards design models and presents results how Eurocode 2 (EN 1992-1-1), Model Code 2010 and draft of second generation of Eurocode 2 (prEN 1992-1-1) take into account strengthening by concrete overlay. A reference specimen is represented by a fragment of a flat slab supported by circular column. Influence of concrete toppings depends on thickness and also on reinforcement ratio. In Eurocode 2 and new generation of Eurocode 2 the increase of punching shear resistance of the slab with concrete topping can be taken into account only by reinforcement ratio and thickness of the slab considering the perfect connection and bond between the original slab and new layer of concrete overlay. Model Code 2010 is based on Critical shear crack theory and the reinforcement ratio in concrete topping was considered in equation of moment of resistance and punching shear resistance is calculated by considering the rotation and deformation of the slab. Estimation of results by parametric study are compared by non-linear model from Atena software.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012060
Author(s):  
S Sarvaicova ◽  
V Borzovic

Abstract This article deals with the punching capacity of a flat slab fragment supported by an internal atypically elongated column. Based on the results of this analysis and the application of Critical Shear Crack Theory, the reliability of two design models was determined. The CSCT model is a mechanical model where the shear force transferred by concrete in shear crack can be determined by accounting for the roughness and opening of a critical shear crack. The crack width is proportional to the slab rotation, which was obtained from a nonlinear program Atena and from experimental test and shear capacity was obtained by integrating the shear strength along the control perimeter. The aim of this analysis was to compare the application of CSCT in non-linear analysis and experimental test to point out the significant difference between obtained results, which shows the importance of experimental tests realization. Non-linear analyses provided unsafe results. Contrary the currently used EC2 model provided safe results when reduction of the control perimeter was applied. The best results were obtained in a combination of the CSCT model with measured rotations of the slab specimen.


Author(s):  
Manish Kumar Pandey

Abstract: The demand for multi-storey buildings is increasing day by day. Residential plus commercial building is mainly used for wide span needs. Wide span required for Flat slab, Waffle slab and ribbed slab stands An excellent option for architects when larger openings in a building need to be covered with as few columns as possible. The use of different types of plates is developing as a new trend and is becoming a major challenge for structural engineers. Therefore, it is necessary to study about its structural behavior. The project is carried out under earthquake zone III under the earthquake analysis of G+9 storey building. For this study, four different types of large span slab structure are modelled in C-shape (Horizontal Setback Building) having 10-stories i.e. G+9 storied buildings with 3.50 meters height for each story is modelled and analysed. The plan area of all four buildings is same i.e. 2859 square meters (49.50 m x 82.50 m) each. These buildings were designed in compliance with the Indian Code of Practices for earthquake resistant design of buildings. Base of the building were fixed. The square sections are used for structural elements. The height of the buildings is considered constant throughout the structure. The buildings are modelled using ETABSvr.2016. Keywords: large span slab, ETABSvr.2016, Horizontal Setback Building, Flat slab, Waffle slab and ribbed slab


Author(s):  
Mr. Nitish A. Mohite

Abstract: In the study, three dimensional analytical models of G+20 story buildings have been generated and analysed using CSI ETABS software version 2016. The earthquake zone III in India is considered for buildings during analysis. Here, the analysis and design is done of G+20 story building with flat slab(with drops) and conventional slab system. In earthquake zone the displacement and drift of the structures will be more so to have more stiffness to the structure shear wall is to be provided therefore a study is made by comparing between conventional slab & flat slab (with drops) building. Comparison of various parameters like story drift, story displacement, story stiffness and time period is done. The equivalent static method is used to design and analyze the structures, as categorized by Indian Standard Code for earthquake resistant structures. The study shows that story drift is 10% more in conventional slab as compared to flat slab; story displacements is observed linearly increasing with height of the building and is 11% more in conventional slab as compared to flat slab . Keywords: Equivalent Static Method, Flat Slab, ETABS 2016, story displacement, story stiffness, story drift, time period


Sign in / Sign up

Export Citation Format

Share Document