analytical approaches
Recently Published Documents


TOTAL DOCUMENTS

2629
(FIVE YEARS 1129)

H-INDEX

67
(FIVE YEARS 12)

Author(s):  
فايزة سعيداني

The right to education at the international and domestic levels has become the interest of several parties who are responsible and obliged to achieve and respect this right, by recruiting all relevant parties and the means available for this. Like other countries, Algeria has recognized this right since the date of independence and is enshrined in all successive constitutions. Where the constitutional founder recognizes the principle of free education, the principle of compulsory basic education, and the state is responsible for regulating the educational system and ensuring equal access to education, but these constitutional principles can only be effective if supported by the legal provisions governing and specifying the applicable provisions in order to achieve the exercise of this right, which has long been considered a fundamental requirement at the international and domestic level. Through this presentation, we have tried to ask how the legal text of the right to education is addressed and whether it was sufficient to meet the basic demands of the educational system in the light of globalization, technological development and digitization. In this context, it was necessary to address the various legal texts and various conventions that addressed the dedication and strengthening of the right to education at the international level and its results at the internal level, which is what we will address through this intervention, by addressing the analysis of the various Algerian legal texts related to the subject through the division of work into two main axes. The descriptive and analytical approaches have been relied upon to reach different results and solutions for improving the curriculum and the educational system in general.


2022 ◽  
Vol 8 ◽  
Author(s):  
Eric Aaron ◽  
Joshua Hawthorne-Madell ◽  
Ken Livingston ◽  
John H. Long

To fully understand the evolution of complex morphologies, analyses cannot stop at selection: It is essential to investigate the roles and interactions of multiple processes that drive evolutionary outcomes. The challenges of undertaking such analyses have affected both evolutionary biologists and evolutionary roboticists, with their common interests in complex morphologies. In this paper, we present analytical techniques from evolutionary biology, selection gradient analysis and morphospace walks, and we demonstrate their applicability to robot morphologies in analyses of three evolutionary mechanisms: randomness (genetic mutation), development (an explicitly implemented genotype-to-phenotype map), and selection. In particular, we applied these analytical techniques to evolved populations of simulated biorobots—embodied robots designed specifically as models of biological systems, for the testing of biological hypotheses—and we present a variety of results, including analyses that do all of the following: illuminate different evolutionary dynamics for different classes of morphological traits; illustrate how the traits targeted by selection can vary based on the likelihood of random genetic mutation; demonstrate that selection on two selected sets of morphological traits only partially explains the variance in fitness in our biorobots; and suggest that biases in developmental processes could partially explain evolutionary dynamics of morphology. When combined, the complementary analytical approaches discussed in this paper can enable insight into evolutionary processes beyond selection and thereby deepen our understanding of the evolution of robotic morphologies.


2022 ◽  
Vol 12 (2) ◽  
pp. 763
Author(s):  
Monika Janaszek-Mańkowska ◽  
Arkadiusz Ratajski ◽  
Jacek Słoma

In this study, the potential of the biospeckle phenomenon for detecting fruit infestation by Drosophila suzukii was examined. We tested both graphical and analytical approaches to evaluate biospeckle activity of healthy and infested fruits. As a result of testing the qualitative approach, a generalized difference method proved to be better at identifying infested areas than Fujii’s method. Biospeckle activity of healthy fruits was low and increased with infestation development. It was found that the biospeckle activity index calculated from spatial-temporal speckle correlation of THSP was the best discriminant of healthy fruits and fruits in two different stages of infestation development irrespective of window size and pixel selection strategy adopted to create the THSP. Other numerical indicators of biospeckle activity (inertia moment, absolute value of differences, average differences) distinguished only fruits in later stage of infestation. Regular values of differences turned out to be of no use in detecting infested fruits. We found that to provide a good representation of activity it was necessary to use a strategy aimed at random selection of pixels gathered around the global maximum of biospeckle activity localized on the graphical outcome. The potential of biospeckle analysis for identification of highbush blueberry fruits infested by D. suzukii was confirmed.


2022 ◽  
Vol 12 ◽  
Author(s):  
Ole Petter Rekvig

Systemic lupus erythematosus (SLE) is diagnosed and classified by criteria, or by experience, intuition and traditions, and not by scientifically well-defined etiology(ies) or pathogenicity(ies). One central criterion and diagnostic factor is founded on theoretical and analytical approaches based on our imperfect definition of the term “The anti-dsDNA antibody”. “The anti-dsDNA antibody” holds an archaic position in SLE as a unique classification criterium and pathogenic factor. In a wider sense, antibodies to unique transcriptionally active or silent DNA structures and chromatin components may have individual and profound nephritogenic impact although not considered yet – not in theoretical nor in descriptive or experimental contexts. This hypothesis is contemplated here. In this analysis, our state-of-the-art conception of these antibodies is probed and found too deficient with respect to their origin, structural DNA specificities and clinical/pathogenic impact. Discoveries of DNA structures and functions started with Miescher’s Nuclein (1871), via Chargaff, Franklin, Watson and Crick, and continues today. The discoveries have left us with a DNA helix that presents distinct structures expressing unique operations of DNA. All structures are proven immunogenic! Unique autoimmune antibodies are described against e.g. ssDNA, elongated B DNA, bent B DNA, Z DNA, cruciform DNA, or individual components of chromatin. In light of the massive scientific interest in anti-DNA antibodies over decades, it is an unexpected observation that the spectrum of DNA structures has been known for decades without being implemented in clinical immunology. This leads consequently to a critical analysis of historical and contemporary evidence-based data and of ignored and one-dimensional contexts and hypotheses: i.e. “one antibody - one disease”. In this study radical viewpoints on the impact of DNA and chromatin immunity/autoimmunity are considered and discussed in context of the pathogenesis of lupus nephritis.


2022 ◽  
Author(s):  
Zheng Jie ◽  
Aziz Khan ◽  
Zhou Bujin ◽  
Zhou Qiong ◽  
Najeeb Ullah ◽  
...  

Cytoplasmic male sterile (CMS) system has extensively been exploited for hybrid vigor in plant breeding programs. However, its application in many crops is limited due to poor understanding of molecular mechanism of fertility restoration. Using advanced analytical approaches, we elucidated molecular pathways regulating CMS induction and fertility restoration in cotton. Reproductive structures of a novel CMS (LD6A) and its maintainer (LD6B) line were analyzed for physiological and proteomic changes during the development process. Significant differential expression of proteins, such as Abrin, malate dehydrogenase, malic enzyme, isocitrate dehydrogenase, histone acetyltransferase was observed in CMS and its maintainer line. Transmission electron micrographs of anther tapetum showed that inner ridge of CMS mitochondria was relatively indistinct than that of LD6B with narrower membranous space at tetrad stage. Further, relatively higher reactive oxygen species were accumulated in the anther of CMS than its maintainer line at pollen mother cell and tetrad stage. We suggest that abnormal sequence of mitochondrial ribosome gene rps4 and rpl10 and high expression of ribosome-inactivating protein gene Abrin in CMS line damaged mitochondrial membrane and consequently induced pollen sterility. These data provide new insight into CMS mechanism in cotton crops and a tool to develop new CMS germplasm resources.


2022 ◽  
Vol 14 (2) ◽  
pp. 727
Author(s):  
Yingzi Jiang ◽  
Arul Prakash Raji ◽  
Vijayanandh Raja ◽  
Fuzhang Wang ◽  
Hussein A. Z. AL-bonsrulah ◽  
...  

Hydropower is a superior energy extraction approach, which has been made to work based on renewable energy sources. In the generation of hydropower, Gravitational Vortex Hydropower (GVHP) plays a predominant contributor role because of its free turbulence-relayed energy utilization concept and flexible as well as compact size. Owing to the huge contribution of GVHP in the hydropower sector, multi-objective-based investigations have emerged. However, there is still insufficient literature available for the technology to precede optimum turbine blade design. Two important categories are involved in these multidisciplinary investigations, in which the first phase, a numerical investigation has been done using ANSYS to identify the location of maximum tangential velocity in a conical basin with different notch angles, conical angles, basin shapes, anddiameters. In this second phase, the focal aim is to carry out the numerical investigation on Gravitation Vortex Turbine Blades (GVTB) for the different geometry in order to get the optimum power output with a high structural lifetime through HSI (Hydro–Structural Interaction) computation. The entire conceptual designs of this SGVHP and its hydro-rotors are modeled with the help of CATIA. ANSYS Fluent is a CFD (Computational Fluid Dynamics) numerical tool, which is primarily used in this paper for all the hydrodynamic analyses. Finally, the standard analytical approaches are used for the comparative determinations of thrust production by hydro-rotors, power extraction by hydro-rotors, and propulsive efficiency for the selection process of best hydro-rotors. HSI analyses are additionally carried out and thereby the suitable lightweight material is picked.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-10
Author(s):  
Muhammad Kashif Hanif ◽  
Naba Ashraf ◽  
Muhammad Umer Sarwar ◽  
Deleli Mesay Adinew ◽  
Reehan Yaqoob

Autism spectrum disorder is an inherited long-living and neurological disorder that starts in the early age of childhood with complicated causes. Autism spectrum disorder can lead to mental disorders such as anxiety, miscommunication, and limited repetitive interest. If the autism spectrum disorder is detected in the early childhood, it will be very beneficial for children to enhance their mental health level. In this study, different machine and deep learning algorithms were applied to classify the severity of autism spectrum disorder. Moreover, different optimization techniques were employed to enhance the performance. The deep neural network performed better when compared with other approaches.


Author(s):  
Eli D. Strauss ◽  
James P. Curley ◽  
Daizaburo Shizuka ◽  
Elizabeth A. Hobson

A century ago, foundational work by Thorleif Schjelderup-Ebbe described a ‘pecking order’ in chicken societies, where individuals could be ordered according to their ability to exert their influence over their group-mates. Now known as dominance hierarchies, these structures have been shown to influence a plethora of individual characteristics and outcomes, situating dominance research as a pillar of the study of modern social ecology and evolution. Here, we first review some of the major questions that have been answered about dominance hierarchies in the last 100 years. Next, we introduce the contributions to this theme issue and summarize how they provide ongoing insight in the epistemology, physiology and neurobiology, hierarchical structure, and dynamics of dominance. These contributions employ the full range of research approaches available to modern biologists. Cross-cutting themes emerging from these contributions include a focus on cognitive underpinnings of dominance, the application of network-analytical approaches, and the utility of experimental rank manipulations for revealing causal relationships. Reflection on the last 100 years of dominance research reveals how Schjelderup-Ebbe's early ideas and the subsequent research helped drive a shift from an essentialist view of species characteristics to the modern recognition of rich inter-individual variation in social, behavioural and physiological phenotypes. This article is part of the theme issue ‘The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies’.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 405
Author(s):  
Prawez Alam ◽  
Faiyaz Shakeel ◽  
Abuzer Ali ◽  
Mohammed H. Alqarni ◽  
Ahmed I. Foudah ◽  
...  

There has been no assessment of the greenness of the described analytical techniques for the simultaneous determination (SMD) of caffeine and paracetamol. As a result, in comparison to the greener normal-phase high-performance thin-layer chromatography (HPTLC) technique, this research was conducted to develop a rapid, sensitive, and greener reversed-phase HPTLC approach for the SMD of caffeine and paracetamol in commercial formulations. The greenness of both techniques was calculated using the AGREE method. For the SMD of caffeine and paracetamol, the greener normal-phase and reversed-phase HPTLC methods were linear in the 50–500 ng/band and 25–800 ng/band ranges, respectively. For the SMD of caffeine and paracetamol, the greener reversed-phase HPTLC approach was more sensitive, accurate, precise, and robust than the greener normal-phase HPTLC technique. For the SMD of caffeine paracetamol in commercial PANEXT and SAFEXT tablets, the greener reversed-phase HPTLC technique was superior to the greener normal-phase HPTLC approach. The AGREE scores for the greener normal-phase and reversed-phase HPTLC approaches were estimated as 0.81 and 0.83, respectively, indicated excellent greenness profiles for both analytical approaches. The greener reversed-phase HPTLC approach is judged superior to the greener normal-phase HPTLC approach based on numerous validation parameters and pharmaceutical assays.


2022 ◽  
Vol 12 ◽  
Author(s):  
Llewellyn E. van Zyl ◽  
Peter M. ten Klooster

Critics of positive psychology have questioned the validity of positive psychological assessment measures (PPAMs), which negatively affects the credibility and public perception of the discipline. Psychometric evaluations of PPAMs have shown that various instruments produce inconsistent factor structures between groups/contexts/times frames, that their predictive validity is questionable, and that popular PPAMs are culturally biased. Further, it would seem positive psychological researchers prioritize date-model-fit over measurement quality. To address these analytical challenges, more innovative and robust approaches toward the validation and evaluation of PPAMs are required to enhance the discipline's credibility and to advance positive psychological science. Exploratory Structural Equation Modeling (ESEM) has recently emerged as a promising alternative to overcome some of these challenges by incorporating the best elements from exploratory- and confirmatory factor analyses. ESEM is still a relatively novel approach, and estimating these models in statistical software packages can be complex and tedious. Therefore, the purpose of this paper is to provide novice researchers with a practical tutorial on how to estimate ESEM with a convenient online tool for Mplus. Specifically, we aim to demonstrate the use of ESEM through an illustrative example by using a popular positive psychological instrument: the Mental Health Continuum-SF. By using the MHC-SF as an example, we aim to provide (a) a brief overview of ESEM (and different ESEM models/approaches), (b) guidelines for novice researchers on how to estimate, compare, report, and interpret ESEM, and (c) a step-by-step tutorial on how to run ESEM analyses in Mplus with the De Beer and Van Zy ESEM syntax generator. The results of this study highlight the value of ESEM, over and above that of traditional confirmatory factor analytical approaches. The results also have practical implications for measuring mental health with the MHC-SF, illustrating that a bifactor ESEM Model fits the data significantly better than any other theoretical model.


Sign in / Sign up

Export Citation Format

Share Document