scholarly journals Dynamical symmetry breaking and negative cosmological constant

2019 ◽  
Vol 34 (24) ◽  
pp. 1950136 ◽  
Author(s):  
Wei Lu

In the context of Clifford functional integral formalism, we revisit the Nambu–Jona-Lasinio-type dynamical symmetry breaking model and examine the properties of the dynamically generated composite bosons. Given that the model with 4-fermion interactions is nonrenormalizable in the traditional sense, the aim is to gain insight into the divergent integrals without resorting to explicit regularization. We impose a restriction on the linearly divergent primitive integrals, thus resolving the long-standing issue of momentum routing ambiguity associated with fermion–antifermion condensations. The removal of the ambiguity paves the way for the possible calculation of the true ratio of Higgs boson mass to top quark mass in the top condensation model. In this paper, we also investigate the negative vacuum energy resulted from dynamical symmetry breaking and its cosmological implications. In the framework of modified Einstein–Cartan gravity, it is demonstrated that the late-time acceleration is driven by a novel way of embedding the Hubble parameter into the Friedmann equation via an interpolation function, whereas the dynamically generated negative cosmological constant only plays a minor role for the current epoch. Two cosmic scenarios are proposed, with one of which suggesting that the universe may have been evolving from an everlasting coasting state towards the accelerating era characterized by the deceleration parameter approaching −0.5 at low redshift. One inevitable outcome of the modified Friedmannian cosmology is that the directly measured local Hubble parameter should in general be larger than the Hubble parameter calibrated from the conventional Friedmann equation. This Hubble tension becomes more pronounced when the Hubble parameter is comparable or less than a characteristic Hubble scale.

2012 ◽  
Vol 62 (1-2) ◽  
pp. 1-274
Author(s):  
Petr Beneš

Dynamical symmetry breaking in models with strong Yukawa interactionsThe primary aim of this paper is to explore the possibility of spontaneous symmetry breaking by strong Yukawa dynamics. Technically, the symmetry is assumed to be broken by formation of symmetry-breaking parts of both the scalar and the fermion propagators, rather than by the scalar vacuum expectation values. The idea is first introduced on an example of a toy model with the underlying symmetry being an Abelian one and later applied to a realistic model of electroweak interaction. In addition, the paper also deals with some more general, model-independent issues, applicable not only to the discussed model of strong Yukawa dynamics, but to a wider class of models with dynamical mass generation. First of these issues is the problem of fermion flavor mixing in the presence of fermion self-energies with a general momentum dependence. It is in particular shown how to define the Cabibbo-Kobayashi-Maskawa matrix in such models and argued that it can come out in principle non-unitary. Second issue is the problem of calculating the gauge boson masses when the symmetry is broken by fermion self-energies. On top of deriving the formula for the gauge boson mass matrix we also find corrections to the related Pagels-Stokar formula.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250156 ◽  
Author(s):  
A. DOFF ◽  
A. A. NATALE

The gauge symmetry breaking in some versions of 3-3-1 models can be implemented dynamically because at the scale of a few TeVs the U(1)X coupling constant becomes strong. In this work, we consider the dynamical symmetry breaking in a minimal SU(3) TC × SU(3)L × U(1)X model, where we propose a new scheme to cancel the chiral anomalies, including two-index symmetric (6) technifermions, which incorporates naturally the walking behavior in the Technicolor (TC) sector. The composite scalar content of the model is minimal and all the symmetry breaking is implemented by a multiplet of technifermions. The choice of TC representations not only provides the anomaly cancelation with a walking behavior, but is crucial to promote the model's full dynamical symmetry breaking. We consider the dynamical generation of technigluon masses and, depending on the 3-3-1 symmetry breaking scale (μ331), we verify that the technigluon mass is strongly linked to the Z′ mass scale, for instance, if μ331 = 1 TeV , we have MZ′ > 1 TeV only if M TG < 350 GeV .


Sign in / Sign up

Export Citation Format

Share Document