QUANTUM FIELD THEORY AND THE ANTIPODAL IDENTIFICATION OF SPACE TIME

1988 ◽  
Vol 03 (11) ◽  
pp. 2567-2588 ◽  
Author(s):  
G. DOMENECH ◽  
M.L. LEVINAS ◽  
N. SÁNCHEZ

We investigate the “elliptic interpretation” of space-time (identification of antipodal points or events) in anti-deSitter and in Rindler manifolds and its consequences for QFT. We compare and give a complete description of antipodal identification in space-times with and without event horizons. Antipodal identification relates the field theories on deSitter and on anti-deSitter spaces. In the “elliptic” Rindler manifold, imaginary time is periodic with period β/2 but the Green functions (for both identifications with and without “Conical singularity”) have period β. (Here β=2π/α, α is the acceleration.) Additional new properties for the Green functions are obtained and the new terms added to the stress tensor computed.

2021 ◽  
pp. 237-252
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

We present a simple form of the Wightman axioms in a four-dimensional Minkowski space-time which are supposed to define a physically interesting interacting quantum field theory. Two important consequences follow from these axioms. The first is the invariance under CPT which implies, in particular, the equality of masses and lifetimes for particles and anti-particles. The second is the connection between spin and statistics. We give examples of interacting field theories and develop the perturbation expansion for Green functions. We derive the Feynman rules, both in configuration and in momentum space, for some simple interacting theories. The rules are unambiguous and allow, in principle, to compute any Green function at any order in perturbation.


2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.


2011 ◽  
Vol 26 (17) ◽  
pp. 2913-2925 ◽  
Author(s):  
ABOUZEID M. SHALABY

In this work, we investigate a very important but unstressed result in the work of C. M. Bender, J.-H. Chen, and K. A. Milton, J. Phys. A39, 1657 (2006). These authors have calculated the vacuum energy of the iϕ3 scalar field theory and its Hermitian equivalent theory up to g4 order of calculations. While all the Feynman diagrams of the iϕ3 theory are finite in 0+1 space–time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and nonrenormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+1 space–time dimensions. Relying on this interesting result, we raise a question: Is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering nonrenormalizability of a field theory as a nongenuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.


1998 ◽  
Vol 13 (16) ◽  
pp. 2857-2874
Author(s):  
IVER H. BREVIK ◽  
HERNÁN OCAMPO ◽  
SERGEI ODINTSOV

We discuss ε-expansion in curved space–time for asymptotically free and asymptotically nonfree theories. The existence of stable and unstable fixed points is investigated for fϕ4 theory and SU(2) gauge theory. It is shown that ε-expansion maybe compatible with aysmptotic freedom on special solutions of the RG equations in a special ase (supersymmetric theory). Using ε-expansion RG technique, the effective Lagrangian for covariantly constant gauge SU(2) field and effective potential for gauged NJL model are found in (4-ε)-dimensional curved space (in linear curvature approximation). The curvature-induced phase transitions from symmetric phase to asymmetric phase (chromomagnetic vacuum and chiral symmetry broken phase, respectively) are discussed for the above two models.


1978 ◽  
Vol 18 (10) ◽  
pp. 3565-3576 ◽  
Author(s):  
S. J. Avis ◽  
C. J. Isham ◽  
D. Storey

2016 ◽  
Vol 24 (2) ◽  
Author(s):  
Luiz C. L. Botelho

AbstractWe analyze on the formalism of probabilities measures-functional integrals on function space the problem of infinities on Euclidean field theories. We also clarify and generalize our previous published studies on the subject.


Sign in / Sign up

Export Citation Format

Share Document