scholarly journals REPRESENTATION DEPENDENCE OF SUPERFICIAL DEGREE OF DIVERGENCES IN QUANTUM FIELD THEORY

2011 ◽  
Vol 26 (17) ◽  
pp. 2913-2925 ◽  
Author(s):  
ABOUZEID M. SHALABY

In this work, we investigate a very important but unstressed result in the work of C. M. Bender, J.-H. Chen, and K. A. Milton, J. Phys. A39, 1657 (2006). These authors have calculated the vacuum energy of the iϕ3 scalar field theory and its Hermitian equivalent theory up to g4 order of calculations. While all the Feynman diagrams of the iϕ3 theory are finite in 0+1 space–time dimensions, some of the corresponding Feynman diagrams in the equivalent Hermitian theory are divergent. In this work, we show that the divergences in the Hermitian theory originate from superrenormalizable, renormalizable and nonrenormalizable terms in the interaction Hamiltonian even though the calculations are carried out in the 0+1 space–time dimensions. Relying on this interesting result, we raise a question: Is the superficial degree of divergence of a theory is representation dependent? To answer this question, we introduce and study a class of non-Hermitian quantum field theories characterized by a field derivative interaction Hamiltonian. We showed that the class is physically acceptable by finding the corresponding class of metric operators in a closed form. We realized that the obtained equivalent Hermitian and the introduced non-Hermitian representations have coupling constants of different mass dimensions which may be considered as a clue for the possibility of considering nonrenormalizability of a field theory as a nongenuine problem. Besides, the metric operator is supposed to disappear from path integral calculations which means that physical amplitudes can be fully obtained in the simpler non-Hermitian representation.

1999 ◽  
Vol 08 (02) ◽  
pp. 125-163 ◽  
Author(s):  
Louis Crane ◽  
David Yetter

We show that any 3D topological quantum field theory satisfying physically reasonable factorizability conditions has associated to it in a natural way a Hopf algebra object in a suitable tensor category. We also show that all objects in the tensor category have the structure of left-left crossed bimodules over the Hopf algebra object. For 4D factorizable topological quantum filed theories, we provide by analogous methods a construction of a Hopf algebra category.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


2021 ◽  
pp. 304-328
Author(s):  
J. Iliopoulos ◽  
T.N. Tomaras

Loop diagrams often yield ultraviolet divergent integrals. We introduce the concept of one-particle irreducible diagrams and develop the power counting argument which makes possible the classification of quantum field theories into non-renormalisable, renormalisable and super-renormalisable. We describe some regularisation schemes with particular emphasis on dimensional regularisation. The renormalisation programme is described at one loop order for φ‎4 and QED. We argue, without presenting the detailed proof, that the programme can be extended to any finite order in the perturbation expansion for every renormalisable (or super-renormalisable) quantum field theory. We derive the equation of the renormalisation group and explain how it can be used in order to study the asymptotic behaviour of Green functions. This makes it possible to introduce the concept of asymptotic freedom.


2008 ◽  
Vol 20 (08) ◽  
pp. 933-949
Author(s):  
C. A. LINHARES ◽  
A. P. C. MALBOUISSON ◽  
I. RODITI

Starting from the complete Mellin representation of Feynman amplitudes for noncommutative vulcanized scalar quantum field theory, introduced in a previous publication, we generalize to this theory the study of asymptotic behaviors under scaling of arbitrary subsets of external invariants of any Feynman amplitude. This is accomplished in both convergent and renormalized amplitudes.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Damiano Anselmi

Abstract We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman iϵ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major significance is that they offer a deeper understanding on the problem of unitarity in quantum field theory. In particular, they apply to “skeleton” diagrams, before integrating on the space components of the loop momenta and the phase spaces. In turn, the skeleton diagrams obey a spectral optical theorem, which gives the usual optical theorem for amplitudes, once the integrals on the space components of the loop momenta and the phase spaces are restored. The fakeon prescription/projection is implemented by dropping the thresholds that involve fakeon frequencies. We give examples at one loop (bubble, triangle, box, pentagon and hexagon), two loops (triangle with “diagonal”, box with diagonal) and arbitrarily many loops. We also derive formulas for the loop integrals with fakeons and relate them to the known formulas for the loop integrals with physical particles.


2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Nathan Seiberg ◽  
Shu-Heng Shao

We discuss nonstandard continuum quantum field theories in 2+1 dimensions. They exhibit exotic global symmetries, a subtle spectrum of charged excitations, and dualities similar to dualities of systems in 1+1 dimensions. These continuum models represent the low-energy limits of certain known lattice systems. One key aspect of these continuum field theories is the important role played by discontinuous field configurations. In two companion papers, we will present 3+1-dimensional versions of these systems. In particular, we will discuss continuum quantum field theories of some models of fractons.


2020 ◽  
pp. 237-288
Author(s):  
Giuseppe Mussardo

Chapter 7 covers the main reasons for adopting the methods of quantum field theory (QFT) to study the critical phenomena. It presents both the canonical quantization and the path integral formulation of the field theories as well as the analysis of the perturbation theory. The chapter also covers transfer matrix formalism and the Euclidean aspects of QFT, the field theory of the Ising model, Feynman diagrams, correlation functions in coordinate space, the Minkowski space and the Legendre transformation and vertex functions. Everything in this chapter will be needed sooner or later, since it highlights most of the relevant aspects of quantum field theory.


2001 ◽  
Vol 16 (09) ◽  
pp. 1531-1558 ◽  
Author(s):  
A. GERASIMOV ◽  
A. MOROZOV ◽  
K. SELIVANOV

The Hopf algebra of Feynman diagrams, analyzed by A. Connes and D. Kreimer, is considered from the perspective of the theory of effective actions and generalized τ-functions, which describes the action of diffeomorphism and shift groups in the moduli space of coupling constants. These considerations provide additional evidence of the hidden group (integrable) structure behind the standard formalism of quantum field theory.


2006 ◽  
Vol 21 (02) ◽  
pp. 297-312 ◽  
Author(s):  
Y. JACK NG ◽  
H. VAN DAM

Neutrices are additive groups of negligible functions that do not contain any constants except 0. Their calculus was developed by van der Corput and Hadamard in connection with asymptotic series and divergent integrals. We apply neutrix calculus to quantum field theory, obtaining finite renormalizations in the loop calculations. For renormalizable quantum field theories, we recover all the usual physically observable results. One possible advantage of the neutrix framework is that effective field theories can be accommodated. Quantum gravity theories will then appear to be more manageable.


2014 ◽  
Vol 25 (04) ◽  
pp. 1450027 ◽  
Author(s):  
Vladimir Turaev ◽  
Alexis Virelizier

Homotopy Quantum Field Theories (HQFTs) generalize more familiar Topological Quantum Field Theories (TQFTs). In generalization of the surgery construction of 3-dimensional TQFTs from modular categories, we use surgery to derive 3-dimensional HQFTs from G-modular categories.


Sign in / Sign up

Export Citation Format

Share Document