scholarly journals GENERALIZED RAYLEIGH AND JACOBI PROCESSES AND EXCEPTIONAL ORTHOGONAL POLYNOMIALS

2013 ◽  
Vol 27 (24) ◽  
pp. 1350135 ◽  
Author(s):  
C.-I. CHOU ◽  
C.-L. HO

We present four types of infinitely many exactly solvable Fokker–Planck equations, which are related to the newly discovered exceptional orthogonal polynomials. They represent the deformed versions of the Rayleigh process and the Jacobi process.

2011 ◽  
Vol 26 (25) ◽  
pp. 1843-1852 ◽  
Author(s):  
C. QUESNE

Exactly solvable rationally-extended radial oscillator potentials, whose wave functions can be expressed in terms of Laguerre-type exceptional orthogonal polynomials, are constructed in the framework of kth-order supersymmetric quantum mechanics, with special emphasis on k = 2. It is shown that for μ = 1, 2, and 3, there exist exactly μ distinct potentials of μth type and associated families of exceptional orthogonal polynomials, where μ denotes the degree of the polynomial gμ arising in the denominator of the potentials.


2011 ◽  
Vol 26 (32) ◽  
pp. 5337-5347 ◽  
Author(s):  
C. QUESNE

A previous study of exactly solvable rationally-extended radial oscillator potentials and corresponding Laguerre exceptional orthogonal polynomials carried out in second-order supersymmetric quantum mechanics is extended to kth-order one. The polynomial appearing in the potential denominator and its degree are determined. The first-order differential relations allowing one to obtain the associated exceptional orthogonal polynomials from those arising in a (k-1)th-order analysis are established. Some nontrivial identities connecting products of Laguerre polynomials are derived from shape invariance.


2008 ◽  
Vol 323 (4) ◽  
pp. 883-892 ◽  
Author(s):  
Choon-Lin Ho ◽  
Ryu Sasaki

Author(s):  
Luca Giuggioli ◽  
Zohar Neu

Noise and time delays, or history-dependent processes, play an integral part in many natural and man-made systems. The resulting interplay between random fluctuations and time non-locality are essential features of the emerging complex dynamics in non-Markov systems. While stochastic differential equations in the form of Langevin equations with additive noise for such systems exist, the corresponding probabilistic formalism is yet to be developed. Here we introduce such a framework via an infinite hierarchy of coupled Fokker–Planck equations for the n -time probability distribution. When the non-Markov Langevin equation is linear, we show how the hierarchy can be truncated at n  = 2 by converting the time non-local Langevin equation to a time-local one with additive coloured noise. We compare the resulting Fokker–Planck equations to an earlier version, solve them analytically and analyse the temporal features of the probability distributions that would allow to distinguish between Markov and non-Markov features. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


Sign in / Sign up

Export Citation Format

Share Document