QUANTUM CORRELATIONS OF TWO SPIN-1 PARTICLES IN THE OPTICAL LATTICE

2014 ◽  
Vol 28 (10) ◽  
pp. 1450049 ◽  
Author(s):  
JIA-DONG SHI ◽  
TAO WU ◽  
XUE-KE SONG ◽  
LIU YE

In this paper, we investigate the dynamical behaviors of quantum correlations witnessed by geometric discord and negativity when two three-level spin-1 atoms exist in the optical lattice. The results show that the GD can detect the critical point K = J at finite temperature associated with the quantum phase transition which separates the superfluid phase from the Mott insulator phase, while the negativity cannot. In addition, the system undergoes an entanglement sudden death (ESD), but the GD always exists, meanwhile, the GD is more robust than negativity against temperature T.

Author(s):  
Michael Aizenman ◽  
Elliott H. Lieb ◽  
Robert Seiringer ◽  
Jan Philip Solovej ◽  
Jakob Yngvason

2014 ◽  
Vol 44 (5) ◽  
pp. 501-505
Author(s):  
Jia XU ◽  
ShengXin LI ◽  
Yang AN ◽  
Yun ZHAO ◽  
DongQi YU ◽  
...  

2007 ◽  
Vol 76 (4) ◽  
Author(s):  
Peng-Bin He ◽  
Qing Sun ◽  
Peng Li ◽  
Shun-Qing Shen ◽  
W. M. Liu

2013 ◽  
Vol 91 (7) ◽  
pp. 542-547 ◽  
Author(s):  
Solomon A. Owerre

We present the linear spin wave theory calculation of the superfluid phase of a hard-core boson J-K model with nearest neighbour exchange J and four-particle ring-exchange K at half filling on the triangular lattice, as well as the phase diagrams of the system at zero and finite temperatures. A similar analysis has been done on a square lattice (Schaffer et al. Phys. Rev. B, 80, 014503 (2009)). We find similar behaviour to that of a square lattice but with different spin wave values of the thermodynamic quantities. We also find that the pure J model (XY model), which has a well-known uniform superfluid phase with an ordered parameter [Formula: see text] at zero temperature is quickly destroyed by the inclusion of negative-K ring-exchange interactions, favouring a state with a (4π/3, 0) ordering wavevector. We further study the behaviour of the finite-temperature Kosterlitz–Thouless phase transition (TKT) in the uniform superfluid phase, by forcing the universal quantum jump condition on the finite-temperature spin wave superfluid density. We find that for K < 0, the phase boundary monotonically decreases to T = 0 at K/J = −4/3, where a phase transition is expected and TKT decreases rapidly, while for positive K, TKT reaches a maximum at some K ≠ 0. It has been shown on a square lattice using quantum Monte Carlo (QMC) simulations that for small K > 0 away from the XY point, the zero-temperature spin stiffness value of the XY model is decreased (Melko and Sandvik. Ann. Phys. 321, 1651 (2006)). Our result seems to agree with this trend found in QMC simulations for two-dimensional systems.


2018 ◽  
Vol 64 (6) ◽  
pp. 662
Author(s):  
Hermann L Albrecht Q ◽  
Douglas F. Mundarain ◽  
Mario I. Caicedo S.

Local available quantum correlations (LAQCs), as dened by Mundarain et al. [19], are analytically determined for Bell Diagonal states. Using the Kraus operators formalism [10], we analyze the dissipative dynamics of 2-qubit LAQCs under Markovian decoherence. This is done for Werner states under the depolarizing [20] and phase damping channels [21]. Since Werner states are among those that exhibit the so called entanglement sudden death [27], the results are compared with the ones obtained for Quantum Discord [22], as analyzed by Werlang et al. [24], as well as for entanglement, i.e. Concurrence[7]. The LAQCs quantier, as Quantum Discord does, only vanishes asymptotically.


Sign in / Sign up

Export Citation Format

Share Document