scholarly journals Local available quantum correlations for Bell Diagonal states and Markovian decoherence

2018 ◽  
Vol 64 (6) ◽  
pp. 662
Author(s):  
Hermann L Albrecht Q ◽  
Douglas F. Mundarain ◽  
Mario I. Caicedo S.

Local available quantum correlations (LAQCs), as dened by Mundarain et al. [19], are analytically determined for Bell Diagonal states. Using the Kraus operators formalism [10], we analyze the dissipative dynamics of 2-qubit LAQCs under Markovian decoherence. This is done for Werner states under the depolarizing [20] and phase damping channels [21]. Since Werner states are among those that exhibit the so called entanglement sudden death [27], the results are compared with the ones obtained for Quantum Discord [22], as analyzed by Werlang et al. [24], as well as for entanglement, i.e. Concurrence[7]. The LAQCs quantier, as Quantum Discord does, only vanishes asymptotically.

2017 ◽  
Vol 15 (06) ◽  
pp. 1750047 ◽  
Author(s):  
Tsamouo Tsokeng Arthur ◽  
Tchoffo Martin ◽  
Lukong Cornelius Fai

We investigate the dynamics of entanglement, quantum discord (QD) and state coherence in a bipartite and noninteracting spin-qutrits system under mixed classical noises. Specifically, the collective effects of static noise (SN) and random telegraphic noise (RTN) each being coupled with a marginal system, are analyzed. While the static noise models a non-Markovian environment, the dynamic noise can model both a Markovian or a non-Markovian environment, and both dynamics are studied. We show that quantum correlations and coherence may survive the noise degrading effects at sufficiently long time when the Markovian regime of the RTN is considered. Meanwhile, the opposite is found in the non-Markovian regime, wherein the nonmonotonic dynamics of quantum features avoid sudden death phenomena. However, the static noise is more fatal to the survival of quantum correlations and quantum state coherence as compared to the RTN.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850381 ◽  
Author(s):  
Jing Yang ◽  
Qi-Xiong Mu ◽  
Yan-Xia Huang

The dynamics of the tripartite thermal entanglement measured by Negativity (N) and the tripartite quantum correlation described by measurement-induced disturbance (MID) under Ornstein–Uhlenbeck noise are investigated. This study has found that the tripartite N and MID can be preserved more effectively in the non-Markovian environment than in the short-time limit and the Markov limit cases. The short-time limit is a better approximation than the Markov limit. MID vanishes only in the asymptotic limit, while entanglement sudden death may occur, and the decreasing duration of MID far outweighs entanglement. This implies that MID is more robust than Negativity. As the noise bandwidth increases, the disentanglement time and the decay time of MID are significantly shorter. The increase of XZX[Formula: see text]+[Formula: see text]YZY three-site interaction is more effective than XZY−YZX three-site interaction to enhance Negativity and MID as well as the disentanglement time. The magnetic field diminishes Negativity and MID, but has no significant influence on the decreasing durations of both Negativity and MID.


2011 ◽  
Vol 18 (02) ◽  
pp. 175-190 ◽  
Author(s):  
Aurelian Isar

In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum entanglement and quantum discord for a system consisting of two noninteracting modes embedded in a thermal environment. Entanglement and discord are used to quantify the quantum correlations of the system. For all values of the temperature of the thermal reservoir, an initially separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and we show that in the case of an entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place for non-zero temperatures of the environment. Only for zero temperature of the thermal bath the initial entangled state remains entangled for finite times. We analyze time evolution of Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and we show that quantum discord decays asymptotically in time under the effect of thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of quantum system.


2014 ◽  
Vol 28 (10) ◽  
pp. 1450049 ◽  
Author(s):  
JIA-DONG SHI ◽  
TAO WU ◽  
XUE-KE SONG ◽  
LIU YE

In this paper, we investigate the dynamical behaviors of quantum correlations witnessed by geometric discord and negativity when two three-level spin-1 atoms exist in the optical lattice. The results show that the GD can detect the critical point K = J at finite temperature associated with the quantum phase transition which separates the superfluid phase from the Mott insulator phase, while the negativity cannot. In addition, the system undergoes an entanglement sudden death (ESD), but the GD always exists, meanwhile, the GD is more robust than negativity against temperature T.


2013 ◽  
Vol 11 (06) ◽  
pp. 1350058 ◽  
Author(s):  
JIAN-SONG ZHANG ◽  
ZHI-YUAN HUANG ◽  
AI-XI CHEN

We study bipartite and multipartite correlations of several coupled qubits within a common non-Markovian bath using the hierarchy equation method. This method does not use the rotating-wave and Born–Markovian approximations. The interaction between the qubits and their coupling strength with the bath have remarkable influence on the dynamics of quantum correlations. The entanglement sudden death (ESD) phenomenon, the amount of stationary state concurrence and spin squeezing can be controled by the non-Markovianity of the environment and interactions between qubits. These properties may be useful for purposes of quantum information processing with multiqubit system in non-Markovian environments.


2019 ◽  
Vol 16 (07) ◽  
pp. 1950109
Author(s):  
Fatima-Zahra Siyouri ◽  
Hicham Ait Mansour ◽  
Fadoua Elbarrichi

We investigate the ability of Wigner function to reveal and measure general quantum correlations in two-qubit open system. For this purpose, we analyze comparatively their dynamics for two different states, continuous-variable Werner states (CWS) and Bell-diagonal states (BDS), independently interacting with dephasing reservoirs. Then, we explore the effects of decreasing the degree of non-Markovianity on their behavior. We show that the presence of both quantum entanglement and quantum discord allow to have a negative Wigner function, in contrast to the result obtained for the closed two-qubit system [F. Siyouri, M. El Baz and Y. Hassouni, The negativity of Wigner function as a measure of quantum correlations, Quantum Inf. Process. 15(10) (2016) 4237–4252]. In fact, we conclude that negativity of Wigner function can be used to capture and quantify the amount of general non-classical correlations in open quantum systems.


2012 ◽  
Vol 10 (08) ◽  
pp. 1241005 ◽  
Author(s):  
CLAUDIA BENEDETTI ◽  
FABRIZIO BUSCEMI ◽  
PAOLO BORDONE ◽  
MATTEO G.A. PARIS

We address the effect of classical noise on the dynamics of quantum correlations, entanglement and quantum discord (QD), of two non-interacting qubits initially prepared in a Bell state. The effect of noise is modeled by randomizing the single-qubit transition amplitudes. We address both static and dynamic environmental noise corresponding to interaction with separate and common baths in either Markovian and non-Markovian regimes. In the Markov regime, a monotone decay of the quantum correlations is found, whereas for non-Markovian noise sudden death and revival phenomena may occur, depending on the characteristics of the noise. Entanglement and QD show the same qualitative behavior for all kind of noises considered. On the other hand, we find that separate and common environments may play opposite roles in preserving quantum correlations, depending on the noise regime considered.


2014 ◽  
Vol 14 (1&2) ◽  
pp. 39-55
Author(s):  
Muhammed Yonac ◽  
Joseph H. Eberly

We investigate the effects of error correction on non-local quantum coherence as a function of time, extending the study by Sainz and Bjork. We consider error correction of amplitude damping, pure phase damping and combinations of amplitude and phase damping as they affect both fidelity and quantum entanglement. Initial two-qubit entanglement is encoded in arbitrary real superpositions of both $\Phi$-type and $\Psi$-type Bell states. Our main focus is on the possibility of delay or prevention of ESD (early stage decoherence, or entanglement sudden death). We obtain the onset times for ESD as a function of the state-superposition mixing angle. Error correction affects entanglement and fidelity differently, and we exhibit initial entangled states for which error correction increases fidelity but decreases entanglement, and vice versa.


Sign in / Sign up

Export Citation Format

Share Document