scholarly journals QUANTUM BAYESIAN NETS

1995 ◽  
Vol 09 (03) ◽  
pp. 295-337 ◽  
Author(s):  
ROBERT R. TUCCI

We begin with a review of a well-known class of networks, Classical Bayesian (CB) nets (also called causal probabilistic nets by some). Given a situation which includes randomness, CB nets are used to calculate the probabilities of various hypotheses about the situation, conditioned on the available evidence. We introduce a new class of networks, which we call Quantum Bayesian (QB) nets, that generalize CB nets to the quantum mechanical regime. We explain how to use QB nets to calculate quantum mechanical conditional probabilities (in case of either sharp or fuzzy observations), and discuss the connection of QB nets to Feynman Path integrals. We give examples of QB nets that involve a single spin-[Formula: see text] particle passing through a configuration of two or three Stern—Gerlach magnets. For the examples given, we present the numerical values of various conditional probabilities, as calculated by a general computer program specially written for this purpose.

1978 ◽  
Vol 48 ◽  
pp. 287-293 ◽  
Author(s):  
Chr. de Vegt ◽  
E. Ebner ◽  
K. von der Heide

In contrast to the adjustment of single plates a block adjustment is a simultaneous determination of all unknowns associated with many overlapping plates (star positions and plate constants etc. ) by one large adjustment. This plate overlap technique was introduced by Eichhorn and reviewed by Googe et. al. The author now has developed a set of computer programmes which allows the adjustment of any set of contemporaneous overlapping plates. There is in principle no limit for the number of plates, the number of stars, the number of individual plate constants for each plate, and for the overlapping factor.


1976 ◽  
Vol 28 (3) ◽  
pp. 793-805 ◽  
Author(s):  
V. P. Maslov ◽  
A. M. Chebotarev

Sign in / Sign up

Export Citation Format

Share Document