Exact Results for Highly Correlated Electron Systems in One Dimension

1997 ◽  
Vol 11 (04n05) ◽  
pp. 355-667 ◽  
Author(s):  
P. Schlottmann

One-dimensional conductors are a long-standing topic of research with direct applications to organic conductors and mesoscopic rings. The discovery of the ceramic high-temperature superconductors has revitalized the interest in low-dimensional charge and spin fluctuations of highly correlated electron systems. Several mechanisms proposed to explain the high-T c superconductors invoke properties of the two-dimensional Hubbard model, but probably also some one-dimensional aspects are relevant. Numerous one-dimensional models for correlated electrons have been studied with various approximate, asymptotically exact and exact methods. These results lead to the concept of Luttinger liquid for interacting electron gases without excitation gaps (metallic systems). Characteristic of Luttinger liquids are the charge and spin separation, marginal Fermi liquid properties, e.g. the absence of quasiparticles in the vicinity of the Fermi surface, nonuniversal power-law singularities in the one-particle spectral function and the related absence of a discontinuity in the momentum distribution at the Fermi level, the power-law decay of correlation functions for long times and large distances, persistent currents in finite rings, etc. Due to the peculiarities of the phase space in one dimension some of the models have sufficient conserved currents to be completely integrable. We review exact results derived within the framework of Bethe's ansatz for integrable one-dimensional models of correlated electrons. The Bethe-ansatz method is presented by explicitly showing the steps leading to the solution of the N-component electron gas interacting via a δ-function potential (repulsive and attractive interaction), which is probably the simplest model of correlated electrons. Emphasis is given to the procedure to extract the groundstate properties, the classification of states, the excitation spectrum, the thermodynamics and finite size effects, such as critical exponents of correlation functions and persistent currents. The method is then applied to numerous other models, e.g. (i) a two-band model involving attractive and repulsive potentials and crystalline fields splitting the bands, (ii) the traditional Hubbard chain with attractive and repulsive U, (iii) the degenerate Hubbard model with repulsive U, which displays a metal–insulator transition at a finite U, (iv) a two-band Hubbard model with repulsive U, (v) the traditional supersymmetric t–J model (vi) a two-band supersymmetric t–J model with band-splitting and (vii) the N-component supersymmetric t–J model. Finally, results for models with long-range interactions, in particular r-2 and sinh -2(r) potentials, are briefly reviewed.

1993 ◽  
Vol 07 (01n03) ◽  
pp. 2-8 ◽  
Author(s):  
F. STEGLICH ◽  
C. GEIBEL ◽  
A. LOIDL ◽  
G. SPARN ◽  
C. D. BREDL ◽  
...  

Heavy-fermion compounds are ideally suited to study cooperative phenomena in highly correlated electron systems. We discuss local-moment magnetism and heavy-fermion band magnetism in the exemplary systems CeCu 2 Ge 2 and Ni-rich Ce(Cu 1− x Ni x )2 Ge 2, respectively. In addition, the coexistence of long-range antiferromagnetic order and heavy-fermion superconductivity in UM 2 Al 3 (M: Ni, Pd) will be addressed.


1998 ◽  
Vol 12 (07n08) ◽  
pp. 709-779 ◽  
Author(s):  
Shun-Qing Shen

Theory of spin-reflection positivity developed in recent years is reviewed. This theory makes use of symmetries in an electron system and theory of matrix to investigate the ground state properties. Existences of anti- and ferromagnetic long-range orders in itinerant electron systems, and of off-diagonal long-range order are two successful applications of the theory. In this article, the author attempt to summarize exact results proved by utilizing this theory and related topics. First a general theory and basic theorems are introduced. Second, based on the band structures of conduction electrons, existences of a singlet state with strongly antiferromagnetic correlation, a state with both anti- and ferromagnetic long-range orders, and a fully saturated ferromagnetic state are proved. The theory is applied to several of the main theoretical models for strongly correlated electron systems, such as the Heisenberg model, the Hubbard model, the Anderson model, the single- and multichannel Kondo model, and the generalized Hubbard model, and a series of rigorous results are found in these models. Third, it is proved that off-diagonal long-range order and charge-density wave exist in the ground states of the attractive Hubbard model and the generalized Hubbard model. A relation between pseudospin symmetry and the uniform density theorem is introduced. Fourth, the theory is applied successfully to explain experimental observations of oscillatory interlayer magnetic coupling in ultrathin magnetic films. Finally several unsolved problems are discussed. All results introduced in this article are mathematically exact.


2014 ◽  
Vol 87 (2) ◽  
pp. 234-249 ◽  
Author(s):  
Kunio Awaga ◽  
Kenji Nomura ◽  
Hideo Kishida ◽  
Wataru Fujita ◽  
Hirofumi Yoshikawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document