Generalized Darboux transformation and rogue wave solution of the coherently-coupled nonlinear Schrödinger system

2016 ◽  
Vol 30 (13) ◽  
pp. 1650208 ◽  
Author(s):  
Hai-Qiang Zhang ◽  
Sha-Sha Yuan ◽  
Yue Wang

In this paper, the generalized Darboux transformation for the coherently-coupled nonlinear Schrödinger (CCNLS) system is constructed in terms of determinant representations. Based on the Nth-iterated formula, the vector bright soliton solution and vector rogue wave solution are systematically derived under the nonvanishing background. The general first-order vector rogue wave solution can admit many different fundamental patterns including eye-shaped and four-petaled rogue waves. It is believed that there are many more abundant patterns for high order vector rogue waves in CCNLS system.

2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
N. Song ◽  
W. Zhang ◽  
P. Wang ◽  
Y. K. Xue

The rogue wave solutions are discussed for an inhomogeneous fifth-order nonlinear Schrödinger equation, which describes the dynamics of a site-dependent Heisenberg ferromagnetic spin chain. Using the Darboux matrix, the generalized Darboux transformation is constructed and a recursive formula is derived. Based on the transformation, the first-order to the third-order rogue wave solutions are obtained. Then, the nonlinear dynamics of the first-order to the third-order rogue waves are studied on the basis of some free parameters. Several new structures of the rogue waves are found using numerical simulation. The conclusions will be a supportive tool to study the rogue waves better.


2014 ◽  
Vol 69 (8-9) ◽  
pp. 441-445 ◽  
Author(s):  
Long-Xing Li ◽  
Jun Liu ◽  
Zheng-De Dai ◽  
Ren-Lang Liu

In this work, the rational homoclinic solution (rogue wave solution) can be obtained via the classical homoclinic solution for the nonlinear Schrödinger (NLS) equation and the coupled nonlinear Schrödinger (CNLS) equation, respectively. This is a new way for generating rogue wave comparing with direct constructing method and Darboux dressing technique


2018 ◽  
Vol 32 (30) ◽  
pp. 1850367 ◽  
Author(s):  
Yehui Huang ◽  
Hongqing Jing ◽  
Runliang Lin ◽  
Yuqin Yao

In this paper, we study the nonlinear Schrödinger equation with self-consistent sources, and obtain the rogue wave solution, the breather solution and their interactions by the generalized Darboux transformation. The dynamics of the rogue wave solution, the breather solution and their interactions are analyzed.


2016 ◽  
Vol 30 (10) ◽  
pp. 1650106 ◽  
Author(s):  
Hai-Qiang Zhang ◽  
Jian Chen

In this paper, we study a higher-order variable coefficient nonlinear Schrödinger (NLS) equation, which plays an important role in the control of the ultrashort optical pulse propagation in nonlinear optical systems. Then, we construct a generalized Darboux transformation (GDT) for the higher-order variable coefficient NLS equation. The [Formula: see text]th order rogue wave solution is obtained by the iterative rule and it can be expressed by the determinant form. As application, we calculate rogue waves (RWs) from first- to fourth-order in accordance with different kinds of parameters. In particular, the dynamical properties and spatial-temporal structures of RWs are discussed and compared with Hirota equation through some figures.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Yali Shen ◽  
Ruoxia Yao

A determinant representation of the n -fold Darboux transformation for the integrable nonlocal derivative nonlinear Schödinger (DNLS) equation is presented. Using the proposed Darboux transformation, we construct some particular solutions from zero seed, which have not been reported so far for locally integrable systems. We also obtain explicit breathers from a nonzero seed with constant amplitude, deduce the corresponding extended Taylor expansion, and obtain several first-order rogue wave solutions. Our results reveal several interesting phenomena which differ from those emerging from the classical DNLS equation.


Sign in / Sign up

Export Citation Format

Share Document