Structure optimization of the AC-SDBD plasma actuator under duty-cycle mode

2018 ◽  
Vol 32 (26) ◽  
pp. 1850315 ◽  
Author(s):  
Yuexiao Long ◽  
Huaxing Li ◽  
Xuanshi Meng ◽  
Jia Li ◽  
Zhengchao Xiang

Alternating current dielectric barrier discharge plasma actuators driven by steady and unsteady mode were experimentally optimized in a static atmosphere. The purpose of this optimization is to enhance the effective controllability of flow control. Electrical properties were evaluated using the measured voltage, current and power consumption data. The dielectric barrier with different materials was tested and the aerodynamic characteristics were identified by particle image velocimetry and electronic force balance. Meanwhile, the duty-cycle technique was applied to operate the actuator in unsteady mode. The dynamic characteristics of induced flow were analyzed by processing the results with the phase-locked method. The development of induced flow structure at different frequencies was compared. Results showed that the plasma actuator with 4 mm-thick Teflon dielectric barrier induced the maximum force and velocity of 75 mN/m and 5.6 m/s, respectively. The discharge frequency has little effect on the control authority at the kilohertz level. The dimensionless area of the induced flow is about [Formula: see text] under steady actuation. The phase-locked results confirm that the scale and strength of the induced vortex vary with the duty-cycle frequencies. The effectiveness of unsteady flow control can be explained as the promotion of the boundary layer and the mainstream.

Author(s):  
Maria Grazia De Giorgi ◽  
Elisa Pescini ◽  
Fedele Marra ◽  
Antonio Ficarella

Nowadays several active flow control systems, particularly dielectric barrier discharge plasma actuators, appear to be effective for the control of flow stream separation and to improve performance of turbomachinery. However these applications require high actuation strength, higher than the one generated by conventional macro plasma actuators. Research is actually improving the design of plasma actuator in order to enhance the flow control capability and reduce the power consumption. In this contest, this work concerns the implementation of a micro plasma actuator for the active control in a compressor cascade. For this aim, firstly the micro actuator was developed and an experimental characterization of the flow induced by the device was done. The induced flow field was studied by means of Particle Image Velocimetry and Laser Doppler Velocimetry. The dissipated power was also evaluated. Experimental results were used to validate a multi-physics numerical model for the prediction of the body forces induced by the plasma actuator. Finally, the obtained body force field was used for modeling the separation control by means of the micro plasma actuator in a highly-loaded subsonic compressor stator.


Author(s):  
João Nunes‐Pereira ◽  
Frederico Freire Rodrigues ◽  
Mohammadmahdi Abdollahzadehsangroudi ◽  
José Carlos Páscoa ◽  
Senentxu Lanceros‐Mendez

Sign in / Sign up

Export Citation Format

Share Document