Plasma Sources Science and Technology
Latest Publications


TOTAL DOCUMENTS

4168
(FIVE YEARS 1322)

H-INDEX

105
(FIVE YEARS 25)

Published By Iop Publishing

1361-6595, 0963-0252

Author(s):  
Michal Zanáška ◽  
Daniel Lundin ◽  
Nils Brenning ◽  
Hao Du ◽  
Pavel Dvorak ◽  
...  

Abstract The plasma potential at a typical substrate position is studied during the positive pulse of a bipolar high-power impulse magnetron sputtering (bipolar HiPIMS) discharge with a Cu target. The goal of the study is to identify suitable conditions for achieving ion acceleration independent on substrate grounding. We find that the time-evolution of the plasma potential during the positive pulse can be separated into several distinct phases, which are highly dependent on the discharge conditions. This includes exploring the influence of the working gas pressure (0.3 – 2 Pa), HiPIMS peak current (10 – 70 A corresponding to 0.5 – 3.5 A/cm2), HiPIMS pulse length (5 – 60 μs) and the amplitude of the positive voltage U+ applied during the positive pulse (0 – 150 V). At low enough pressure, high enough HiPIMS peak current and long enough HiPIMS pulse length, the plasma potential at a typical substrate position is seen to be close to 0 V for a certain time interval (denoted phase B) during the positive pulse. At the same time, spatial mapping of the plasma potential inside the magnetic trap region revealed an elevated value of the plasma potential during phase B. These two plasma potential characteristics are identified as suitable for achieving ion acceleration in the target region. Moreover, by investigating the target current and ion saturation current at the chamber walls, we describe a simple theory linking the value of the plasma potential profile to the ratio of the available target electron current and ion saturation current at the wall.


Author(s):  
Vladimir Kolobov ◽  
Juan Alonso Guzmán ◽  
R R Arslanbekov

Abstract A self-consistent hybrid model of standing and moving striations was developed for low-current DC discharges in noble gases. We introduced the concept of surface diffusion in phase space (r,u) (where u denotes the electron kinetic energy) described by a tensor diffusion in the nonlocal Fokker-Planck kinetic equation for electrons in the collisional plasma. Electrons diffuse along surfaces of constant total energy ε=u-eφ(r) between energy jumps in inelastic collisions with atoms. Numerical solutions of the 1d1u kinetic equation for electrons were obtained by two methods and coupled to ion transport and Poisson solver. We studied the dynamics of striation formation in Townsend and glow discharges in Argon gas at low discharge currents using a two-level excitation-ionization model and a “full-chemistry” model, which includes stepwise and Penning ionization. Standing striations appeared in Townsend and glow discharges at low currents, and moving striations were obtained for the discharge currents exceeding a critical value. These waves originate at the anode and propagate towards the cathode. We have seen two types of moving striations with the 2-level and full-chemistry models, which resemble the s and p striations previously observed in the experiments. Simulations indicate that processes in the anode region could control moving striations in the positive column plasma. The developed model helps clarify the nature of standing and moving striations in DC discharges of noble gases at low discharge currents and low gas pressures.


Author(s):  
Luis Gustavo Martinez ◽  
Akash Dhruv ◽  
Elias Balaras ◽  
Michael Keidar

Abstract This work presents a model for an atmospheric Helium plasma interacting with normal and cancer cells. This interaction is simulated through the expansion and impingement of a gaseous jet onto targets with varying electrical permittivity. Simulation results show that for a plasma jet impinging onto two targets with different permittivity placed axis-symmetrically relative to the stagnation point of impingement, the jet is biased toward the target with lower permittivity when the target acts as a floating potential. This trend is reversed when the back surface of the target is grounded. In the case of a floating target, higher target permittivity yields a higher positive surface potential as the material experiences higher polarization in response to the net flux of electrons from the plasma onto the surface. Because of this higher surface potential, targets with higher permittivity generate a smaller electric field in the discharge column relative to materials with lower permittivity. When the back surface of the target is ground, the trend is reversed, with polarization occurring primarily on the back surface due to the response to the reservoir of positive charges introduced by ground. In the ground case, the material experiences more negative charging the front surface which induces a lower electric potential. As a result, the material with higher permittivity and a grounded back surface attracts plasma organization at the interface because of the higher local electric field. These numerical findings support experimental results presented by other researchers, which demonstrate selectivity of plasma jets towards some cancer cells more than others. The mechanism introduced here may help inform targeted treatment of specific cells, including those reported to be more resistant to plasma jets.


Author(s):  
Tim Jacobus Adrianus Staps ◽  
Tim Jacobus Maria Donders ◽  
Bart Platier ◽  
J Beckers

Abstract Negative ions are an important constituent of the spatial afterglow of atmospheric pressure plasmas, where the fundamental plasma-substrate interactions take place that are vital for applications such as biomedicine, material synthesis, and ambient air treatment. In this work, we use laser-induced photodetachment to liberate electrons from negative ions in the afterglow region of an atmospheric pressure plasma jet interacting with an argon-oxygen mixture, and microwave cavity resonance spectroscopy (MCRS) to detect the photodetached electrons. This diagnostic technique allows for the determination of the electron density and the effective collision frequency before, during and after the laser pulse was shot through the measurement volume with nanosecond time resolution. From a laser saturation study, it is concluded that O− is the dominant negative ion in the afterglow. Moreover, the decay of the photodetached electron density is found to be dominantly driven by the (re)formation of O− by dissociative attachment of electrons with O2. As a consequence, we identified the species and process responsible for the formation of negative ions in the spatial afterglow in our experiment.


Author(s):  
Han Mingyue ◽  
Yang Luo ◽  
Liuhe Li ◽  
Hua Li ◽  
Ye Xu ◽  
...  

Abstract Investigating the ion dynamics in the emerging bipolar pulse high power impulse magnetron sputtering (BP-HiPIMS) discharge is necessary and important for broadening its industrial applications. Recently, an optimized plasma source operating the BP-HiPIMS with an auxiliary anode and a solenoidal coil is proposed to enhance the plasma flux and energy, named as ACBP-HiPIMS (‘A’-anode, ‘C’-coil). In the present work, the temporal evolutions of the ion velocity distribution functions (IVDF) in BP-HiPIMS and ACBP-HiPIMS discharges are measured using a retarding field energy analyser (RFEA). For the BP-HiPIMS discharge, operated at various positive pulse voltages U+, the temporal evolutions of IVDFs illustrate that there are two high-energy peaks, E1 and E2, which are both lower than the applied U+. The ratio of the mean ion energy Ei,mean to the applied U+ is around 0.55-0.6 at various U+. In ACBP-HiPIMS discharge, the IVDF evolution shows three distinguishable stages which has the similar evolution trend with the floating potential Vf on the RFEA frontplate: (i) the stable stage with two high-energy peaks (E2 and E3 with energy respectively lower and higher than the applied U+ amplitude) when the floating potential Vf is close to the applied positive pulse voltage; (ii) the transition stage with low-energy populations when the Vf drops by ~20 V within ~10 μs; and (iii) the oscillation stage with alternating E2 and E3 populations and ever-present E1 population when the Vf slighly descreases unitl to the end of positive pulse. The comparison of IVDFs in BP-HiPIMS and ACBP-HiPIMS suggests that both the mean ion energy and high-energy ion flux have been effectively improved in ACBP-HiPIMS discharge. The formation of floating potential drop is explored using the Langmuir probe which may be attributed to the establishment of anode double layer structure.


Author(s):  
Yuanfu Yue ◽  
Vighneswara Siva Santosh Kumar Kondeti ◽  
Nader Sadeghi ◽  
Peter Bruggeman

Abstract While plasma-liquid interactions have been an important focus in the plasma research community, the impact of the strong coupling between plasma and liquid on plasma properties and processes remains not fully understood. In this work, we report on the impact of the applied voltage, pulse width and liquid conductivity on the plasma morphology and the OH generation for a positive pulsed DC atmospheric pressure plasma jet with He-0.1% H2O mixture interacting with a liquid cathode. We adopted diagnostic techniques of fast imaging, 2D laser induced fluorescence (LIF) of OH and Thomson scattering spectroscopy. We show that plasma instabilities and enhanced evaporation occur and have a significant impact on the OH generation. At elevated plasma energies, it is found that the plasma contracts due to a thermal instability through Ohmic heating and the contraction coincides with a depletion in the OH density in the core due to electron impact dissociation. For lower plasma energies, the instability is suppressed/delayed by the equivalent series resistor of the liquid electrode. An estimation of the energy flux from the plasma to the liquid shows that the energy flux of the ions released into the liquid by positive ion hydration is dominant, and significantly larger than the energy needed to evaporate sufficient amount of water to account for the measured H2O concentration increase near the plasma-liquid interface.


Author(s):  
Baptiste Trotabas ◽  
Renaud Gueroult

Abstract The benefits of thermionic emission from negatively biased electrodes for perpendicular electric field control in a magnetized plasma are examined through its combined effects on the sheath and on the plasma potential variation along magnetic field lines. By increasing the radial current flowing through the plasma thermionic emission is confirmed to improve control over the plasma potential at the sheath edge compared to the case of a cold electrode. Conversely, thermionic emission is shown to be responsible for an increase of the plasma potential drop along magnetic field lines in the quasi-neutral plasma. These results suggest that there exists a trade-off between electric field longitudinal uniformity and amplitude when using negatively biased emissive electrodes to control the perpendicular electric field in a magnetized plasma.


Author(s):  
Lucas Fuster ◽  
Gerjan J M Hagelaar ◽  
Romain Pascaud ◽  
Antoine Simon ◽  
Patrick Hoffmann ◽  
...  

Abstract Plasma-based microwave power limitation in a suspended microstrip transmission line integrating a micro hollow cathode discharge (MHCD) in its center is experimentally and numerically studied. Transient and steady state microwave power measurements exhibit a limitation threshold of 28 dBm and time responses of 25 microseconds. Intensified charge-coupled device (ICCD) imaging shows that microwave breakdown occurs at the top of the MHCD. The plasma then extends towards the microwave source within the suspended microstrip transmission line. Besides, a self-consistent model is proposed to simulate the non-linear interaction between microwave and plasma. It gives numerical results in great agreement with the measurements, and show that the plasma expansion during the transient response is related to a shift between the ionization source term and the electron density maximum. The propagation speed, under the tested conditions, depends mainly on the stepwise ionization from the excited states.


Author(s):  
Wan Dong ◽  
Yi Fan Zhang ◽  
ZhongLing Dai ◽  
Julian Schulze ◽  
Yuan-Hong Song ◽  
...  

Abstract Radio frequency capacitively coupled plasmas (RF CCPs) sustained in fluorocarbon gases or their mixtures with argon are widely used in plasma-enhanced etching. In this work, we conduct studies on instabilities in a capacitive CF4/Ar (1:9) plasma driven at 13.56 MHz at a pressure of 150 mTorr, by using a one-dimensional fluid/Monte-Carlo (MC) hybrid model. Fluctuations are observed in densities and fluxes of charged particles, electric field, as well as electron impact reaction rates, especially in the bulk. As the gap distance between the electrodes increases from 2.8 cm to 3.8 cm, the fluctuation amplitudes become smaller gradually and the instability period gets longer, as the driving power density ranges from 250 to 300 W/m2. The instabilities are on a time scale of 16-20 RF periods, much shorter than those millisecond periodic instabilities observed experimentally owing to attachment/detachment in electronegative plasmas. At smaller electrode gap, a positive feedback to the instability generation is induced by the enhanced bulk electric field in the highly electronegative mode, by which the electron temperature keeps strongly oscillating. Electrons at high energy are mostly consumed by ionization rather than attachment process, making the electron density increase and overshoot to a much higher value. And then, the discharge becomes weakly electronegative and the bulk electric field becomes weak gradually, resulting in the continuous decrease of the electron density as the electron temperature keeps at a much lower mean value. Until the electron density attains its minimum value again, the instability cycle is formed. The ionization of Ar metastables and dissociative attachment of CF4 are noticed to play minor roles compared with the Ar ionization and excitation at this stage in this mixture discharge. The variations of electron outflow from and negative ion inflow to the discharge center need to be taken into account in the electron density fluctuations, apart from the corresponding electron impact reaction rates. We also notice more than 20% change of the Ar+ ion flux to the powered electrode and about 16% difference in the etching rate due to the instabilities in the case of 2.8 cm gap distance, which is worthy of more attention for improvement of etching technology.


Author(s):  
Lisa Buschmann ◽  
Ashild Fredriksen

Abstract The information about the electron population of a helicon source plasma that expands along a magnetic nozzle is important for understanding the plasma acceleration across the potential drop that forms in the nozzle. The electrons need an energy higher than the potential drop to escape from the source. At these energies the signal of a Langmuir probe is less accurate. An inverted RFEA measures the high-energy tail of the electrons. To reach the probe, they must have energies above the plasma potential VP, which can vary over the region of the measurement. By constructing a full distribution by applying the electron temperature Te obtained from the electron IV-curve and the VP obtained from the ion collecting RFEA or an emissive probe, a density measure of the hot electron distribution independent of VP can be obtained. The variation of the high-energy tail of the EEDF in both radial and axial directions, in the two different cases of 1) a purely expanding magnetic field nozzle, and 2) a more constricted one by applying current in a third, downstream coil was investigated. The electron densities and temperatures from the source are then compared to two analytic models of the downstream development of the electron density. The first model considers the development for a pure Boltzmann distribution while the second model takes an additional magnetic field expansion into account. A good match between the measured densities and the second model was found for both configurations. The RFEA probe also allows for directional measurement of the electron current to the probe. This property is used to compare the densities from the downstream and upstream directions, showing a much lower contribution of downstream electrons into the source for a purely expanding magnetic field in comparison to the confined magnetic field configuration.


Sign in / Sign up

Export Citation Format

Share Document