DYNAMIC COMPLEXITIES IN RATIO-DEPENDENT PREDATOR–PREY ECOSYSTEM MODELS WITH BIRTH PULSE AND PESTICIDE PULSE

2004 ◽  
Vol 14 (08) ◽  
pp. 2893-2903 ◽  
Author(s):  
JING HUI ◽  
LAN-SUN CHEN

In many models of pest control, increases in pest population due to birth are assumed to be continuous, but in fact, pest population reproduces only during a single period; at the same time, pesticides are often applied during the period. So in this paper we propose a ratio-dependent predator–prey model with birth pulse and pesticide pulse. Using the discrete dynamical system determined by the stroboscopic map, we obtain an exact periodic solution of systems which have Ricker functions or Beverton–Holt functions, and obtain the threshold conditions for their stability. Above the threshold, there is a characteristic sequence of bifurcations, leading to chaotic dynamics, which implies that the dynamical behaviors of the ratio-dependent predator–prey model with birth pulse and pesticide pulse are very complex, including small-amplitude oscillations, large-amplitude cycles and chaos. This suggests that birth pulse and pesticide pulse, in effect, provide a natural period or cyclicity that allows for period-doubling bifurcation and period-halving bifurcation route to chaos.

2019 ◽  
Vol 13 (01) ◽  
pp. 1950093
Author(s):  
Wei Liu ◽  
Yaolin Jiang

In this paper, a difference-algebraic predator–prey model is proposed, and its complex dynamical behaviors are analyzed. The model is a discrete singular system, which is obtained by using Euler scheme to discretize a differential-algebraic predator–prey model with harvesting that we establish. Firstly, the local stability of the interior equilibrium point of proposed model is investigated on the basis of discrete dynamical system theory. Further, by applying the new normal form of difference-algebraic equations, center manifold theory and bifurcation theory, the Flip bifurcation and Neimark–Sacker bifurcation around the interior equilibrium point are studied, where the step size is treated as the variable bifurcation parameter. Lastly, with the help of Matlab software, some numerical simulations are performed not only to validate our theoretical results, but also to show the abundant dynamical behaviors, such as period-doubling bifurcations, period 2, 4, 8, and 16 orbits, invariant closed curve, and chaotic sets. In particular, the corresponding maximum Lyapunov exponents are numerically calculated to corroborate the bifurcation and chaotic behaviors.


2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


2022 ◽  
Vol 40 ◽  
pp. 1-20
Author(s):  
Parisa Azizi ◽  
Reza Khoshsiar Ghaziani

In this paper, we study a ratio-dependent predator-prey model with modied Holling-Tanner formalism, by using dynamical techniques and numerical continuation algorithms implemented in Matcont. We determine codim-1 and 2 bifurcation points and their corresponding normal form coecients. We also compute a curve of limit cycles of the system emanating from a Hopf point.


Sign in / Sign up

Export Citation Format

Share Document