scholarly journals CONTINUOUS-TIME QUANTUM WALKS AND TRAPPING

2010 ◽  
Vol 20 (02) ◽  
pp. 271-279 ◽  
Author(s):  
ELENA AGLIARI ◽  
OLIVER MÜLKEN ◽  
ALEXANDER BLUMEN

Recent findings suggest that processes such as the excitonic energy transfer through the photosynthetic antenna display quantal features, aspects known from the dynamics of charge carriers along polymer backbones. Hence, in modeling energy transfer one has to leave the classical, master-equation-type formalism and advance towards an increasingly quantum-mechanical picture, while still retaining a local description of the complex network of molecules involved in the transport, say through a tight-binding approach. Interestingly, the continuous time random walk (CTRW) picture, widely employed in describing transport in random environments, can be mathematically reformulated to yield a quantum-mechanical Hamiltonian of tight-binding type; the procedure uses the mathematical analogies between time-evolution operators in statistical and in quantum mechanics: The result are continuous-time quantum walks (CTQWs). However, beyond these formal analogies, CTRWs and CTQWs display vastly different physical properties. In particular, here we focus on trapping processes on a ring and show, both analytically and numerically, that distinct configurations of traps (ranging from periodical to random) yield strongly different behaviors for the quantal mean survival probability, while classically (under ordered conditions) we always find an exponential decay at long times.

Entropy ◽  
2018 ◽  
Vol 20 (8) ◽  
pp. 586 ◽  
Author(s):  
Xin Wang ◽  
Yi Zhang ◽  
Kai Lu ◽  
Xiaoping Wang ◽  
Kai Liu

The isomorphism problem involves judging whether two graphs are topologically the same and producing structure-preserving isomorphism mapping. It is widely used in various areas. Diverse algorithms have been proposed to solve this problem in polynomial time, with the help of quantum walks. Some of these algorithms, however, fail to find the isomorphism mapping. Moreover, most algorithms have very limited performance on regular graphs which are generally difficult to deal with due to their symmetry. We propose IsoMarking to discover an isomorphism mapping effectively, based on the quantum walk which is sensitive to topological structures. Firstly, IsoMarking marks vertices so that it can reduce the harmful influence of symmetry. Secondly, IsoMarking can ascertain whether the current candidate bijection is consistent with existing bijections and eventually obtains qualified mapping. Thirdly, our experiments on 1585 pairs of graphs demonstrate that our algorithm performs significantly better on both ordinary graphs and regular graphs.


2017 ◽  
Vol 96 (4) ◽  
Author(s):  
Matteo A. C. Rossi ◽  
Claudia Benedetti ◽  
Massimo Borrelli ◽  
Sabrina Maniscalco ◽  
Matteo G. A. Paris

2014 ◽  
Vol 90 (3) ◽  
Author(s):  
Zoltán Darázs ◽  
Anastasiia Anishchenko ◽  
Tamás Kiss ◽  
Alexander Blumen ◽  
Oliver Mülken

2011 ◽  
Vol 09 (03) ◽  
pp. 823-842 ◽  
Author(s):  
YANG GE ◽  
BENJAMIN GREENBERG ◽  
OSCAR PEREZ ◽  
CHRISTINO TAMON

We describe new constructions of graphs which exhibit perfect state transfer on continuous-time quantum walks. Our constructions are based on generalizations of the double cones and variants of the Cartesian graph products (which include the hypercube). We also describe a generalization of the path collapsing argument (which reduces questions about perfect state transfer to simpler weighted multigraphs) for graphs with equitable distance partitions.


Sign in / Sign up

Export Citation Format

Share Document