RANDOM ATTRACTORS FOR STOCHASTIC EQUATIONS DRIVEN BY A FRACTIONAL BROWNIAN MOTION

2010 ◽  
Vol 20 (09) ◽  
pp. 2761-2782 ◽  
Author(s):  
M. J. GARRIDO-ATIENZA ◽  
B. MASLOWSKI ◽  
B. SCHMALFUß

In this paper, the asymptotic behavior of stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H > 1/2 is studied. In particular, it is shown that the corresponding solutions generate a random dynamical system for which the existence and uniqueness of a random attractor is proved.

2019 ◽  
Vol 27 (2) ◽  
pp. 107-122
Author(s):  
Fulbert Kuessi Allognissode ◽  
Mamadou Abdoul Diop ◽  
Khalil Ezzinbi ◽  
Carlos Ogouyandjou

Abstract This paper deals with the existence and uniqueness of mild solutions to stochastic partial functional integro-differential equations driven by a sub-fractional Brownian motion {S_{Q}^{H}(t)} , with Hurst parameter {H\in(\frac{1}{2},1)} . By the theory of resolvent operator developed by R. Grimmer (1982) to establish the existence of mild solutions, we give sufficient conditions ensuring the existence, uniqueness and the asymptotic behavior of the mild solutions. An example is provided to illustrate the theory.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Sadibou Aidara ◽  
Ibrahima Sane

Abstract This paper deals with a class of deplay backward stochastic differential equations driven by fractional Brownian motion (with Hurst parameter H greater than 1 2 {\frac{1}{2}} ). In this type of equation, a generator at time t can depend not only on the present but also the past solutions. We essentially establish existence and uniqueness of a solution in the case of Lipschitz coefficients and non-Lipschitz coefficients. The stochastic integral used throughout this paper is the divergence-type integral.


2013 ◽  
Vol 23 (03) ◽  
pp. 1350041 ◽  
Author(s):  
ANHUI GU

This paper is devoted to consider stochastic lattice dynamical systems (SLDS) driven by fractional Brownian motions with Hurst parameter bigger than 1/2. Under usual dissipativity conditions these SLDS are shown to generate a random dynamical system for which the existence and uniqueness of a random attractor are established. Furthermore, the random attractor is, in fact, a singleton sets random attractor.


2011 ◽  
Vol 11 (02n03) ◽  
pp. 243-263 ◽  
Author(s):  
MIREIA BESALÚ ◽  
DAVID NUALART

In this paper we establish precise estimates for the supremum norm for the solution of a dynamical system driven by a Hölder continuous function of order between ⅓ and ½ using the techniques of fractional calculus. As an application we deduce the existence of moments for the solutions to stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(⅓, ½) and we obtain an estimate for the supremum norm of the Malliavin derivative.


2002 ◽  
Vol 02 (02) ◽  
pp. 225-250 ◽  
Author(s):  
T. E. DUNCAN ◽  
B. PASIK-DUNCAN ◽  
B. MASLOWSKI

In this paper, stochastic differential equations in a Hilbert space with a standard, cylindrical fractional Brownian motion with the Hurst parameter in the interval (1/2,1) are investigated. Existence and uniqueness of mild solutions, continuity of the sample paths and state space regularity of the solutions, and the existence of limiting measures are verified. The equivalence of the probability laws for the solution evaluated at different times and different initial conditions and the convergence of these probability laws to the limiting probability are verified. These results are applied to specific stochastic parabolic and hyperbolic differential equations. The solution of a specific parabolic equation with the fractional Brownian motion only in the boundary condition is shown to have many results that are analogues of the results for a fractional Brownian motion in the domain.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Bakka ◽  
S. Hajji ◽  
D. Kiouach

Abstract By means of the Banach fixed point principle, we establish some sufficient conditions ensuring the existence of the global attracting sets of neutral stochastic functional integrodifferential equations with finite delay driven by a fractional Brownian motion (fBm) with Hurst parameter H ∈ ( 1 2 , 1 ) {H\in(\frac{1}{2},1)} in a Hilbert space.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hossein Jafari ◽  
Marek T. Malinowski ◽  
M. J. Ebadi

AbstractIn this paper, we consider fuzzy stochastic differential equations (FSDEs) driven by fractional Brownian motion (fBm). These equations can be applied in hybrid real-world systems, including randomness, fuzziness and long-range dependence. Under some assumptions on the coefficients, we follow an approximation method to the fractional stochastic integral to study the existence and uniqueness of the solutions. As an example, in financial models, we obtain the solution for an equation with linear coefficients.


2019 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Eric Djeutcha ◽  
Didier Alain Njamen Njomen ◽  
Louis-Aimé Fono

This study deals with the arbitrage problem on the financial market when the underlying asset follows a mixed fractional Brownian motion. We prove the existence and uniqueness theorem for the mixed geometric fractional Brownian motion equation. The semi-martingale approximation approach to mixed fractional Brownian motion is used to eliminate the arbitrage opportunities.


2014 ◽  
Vol 22 (4) ◽  
Author(s):  
Zhi Li ◽  
Jiaowan Luo

AbstractIn this paper, Harnack inequalities are established for stochastic functional differential equations driven by fractional Brownian motion with Hurst parameter


Sign in / Sign up

Export Citation Format

Share Document