mixed fractional brownian motion
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 34)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Panhong Cheng ◽  
Zhihong Xu

A new framework for pricing European vulnerable options is developed in the case where the underlying stock price and firm value follow the mixed fractional Brownian motion with jumps, respectively. This research uses the actuarial approach to study the pricing problem of European vulnerable options. An analytic closed-form pricing formula for vulnerable options with jumps is obtained. For the purpose of understanding the pricing model, some properties of this pricing model are discussed in the paper. Finally, we compare and analyze the pricing results of different pricing models and discuss the influences of basic parameters on the pricing results of our proposed model by using numerical simulations, and the corresponding economic analyses about these influences are given.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Weijun Ma ◽  
Wei Liu ◽  
Quanxin Zhu ◽  
Kaibo Shi

This paper examines the dynamics of the exponential population growth system with mixed fractional Brownian motion. First, we establish some useful lemmas that provide powerful tools for studying the stochastic differential equations with mixed fractional Brownian motion. We offer some explicit expressions and numerical characteristics such as mathematical expectation and variance of the solutions of the exponential population growth system with mixed fractional Brownian motion. Second, we propose two sufficient and necessary conditions for the almost sure exponential stability and the k th moment exponential stability of the solution of the constant coefficient exponential population growth system with mixed fractional Brownian motion. Furthermore, we conduct some large deviation analysis of this mixed fractional population growth system. To the best of the authors’ knowledge, this is the first paper to investigate how the Hurst index affects the exponential stability and large deviations in the biological population system. It is interesting that the phenomenon of large deviations always occurs for addressed system when 1 / 2 < H < 1 . Moreover, several numerical simulations are reported to show the effectiveness of the proposed approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yuling Wang ◽  
Jing Wang

This paper studies the pricing of American carbon emission derivatives and its numerical method under the mixed fractional Brownian motion. To capture the long memory properties such as self-similarity and long-range dependence in the price process, we proposed a model based on a fractional Black–Scholes, which is more in line with the actual characteristics of the option market. We have outlined a power penalty approach using parabolic variation inequality and linear complementarity (LCP) which arises from mixed fractional Brownian motion. In addition, we introduced a nonuniform grid-based modification of the fitted finite volume method for numerical solution. Numerically, we show the impact of Hurst exponent on the pricing and analyze the convergence rates of the proposed penalty method. In conclusion, since mfBm is a well-developed mathematical model of strongly correlated stochastic processes, this model will be an efficient model for pricing carbon financial derivative.


Sign in / Sign up

Export Citation Format

Share Document