ANDRONOV–HOPF BIFURCATION OF HIGHER CODIMENSIONS IN A LIÉNARD SYSTEM

2012 ◽  
Vol 22 (11) ◽  
pp. 1250271 ◽  
Author(s):  
ALEXANDER GRIN ◽  
KLAUS R. SCHNEIDER

We study a polynomial Liénard system depending on three parameters a, b, c and exhibiting the following properties: (i) The origin is the unique equilibrium for all parameters. (ii) If a crosses zero, then the origin changes its stability, and Andronov–Hopf bifurcation arises. We consider a as control parameter and investigate the dependence of Andronov–Hopf bifurcation on the "unfolding" parameters b and c. We establish and describe analytically the existence of surfaces and curves located near the origin in the parameter space connected with the existence of small-amplitude limit cycles of multiplicity two and three (existence of degenerate Andronov–Hopf bifurcation).

2012 ◽  
Vol 22 (08) ◽  
pp. 1250203 ◽  
Author(s):  
JING SU ◽  
JUNMIN YANG ◽  
MAOAN HAN

As we know, Liénard system is an important model of nonlinear oscillators, which has been widely studied. In this paper, we study the Hopf bifurcation of an analytic Liénard system by perturbing a nilpotent center. We develop an efficient method to compute the coefficients bl appearing in the expansion of the first order Melnikov function by finding a set of equivalent quantities B2l+1 which are able to calculate directly and can be used to study the number of small-amplitude limit cycles of the system. As an application, we investigate some polynomial Liénard systems, obtaining a lower bound of the maximal number of limit cycles near a nilpotent center.


2008 ◽  
Vol 245 (9) ◽  
pp. 2522-2533 ◽  
Author(s):  
Maciej Borodzik ◽  
Henryk Żołądek

2016 ◽  
Vol 26 (02) ◽  
pp. 1650025 ◽  
Author(s):  
R. Asheghi ◽  
A. Bakhshalizadeh

In this work, we study the Abelian integral [Formula: see text] corresponding to the following Liénard system, [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are real bounded parameters. By using the expansion of [Formula: see text] and a new algebraic criterion developed in [Grau et al., 2011], it will be shown that the sharp upper bound of the maximal number of isolated zeros of [Formula: see text] is 4. Hence, the above system can have at most four limit cycles bifurcating from the corresponding period annulus. Moreover, the configuration (distribution) of the limit cycles is also determined. The results obtained are new for this kind of Liénard system.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Junning Cai ◽  
Minzhi Wei ◽  
Guoping Pang

In the presented paper, the Abelian integral I h of a Liénard system is investigated, with a heteroclinic loop passing through a nilpotent saddle. By using a new algebraic criterion, we try to find the least upper bound of the number of limit cycles bifurcating from periodic annulus.


Author(s):  
Ali Bakur Barsham ALmurad ◽  
Elamin Mohammed Saeed Ali

This paper is part of a wider study limit cycle problems and planar system; The aims of this is to study the existence of limit cycle for Liénard system. We followed the historical analytical mathematical method to present a proof of a result on the existence of limit cycle for Liénard system form x ̇=y-F(x) ,y ̇=-g(x)


2018 ◽  
Vol 28 (06) ◽  
pp. 1850069 ◽  
Author(s):  
Yusen Wu ◽  
Laigang Guo ◽  
Yufu Chen

In this paper, we consider a class of Liénard systems, described by [Formula: see text], with [Formula: see text] symmetry. Particular attention is given to the existence of small-amplitude limit cycles around fine foci when [Formula: see text] is an odd polynomial function and [Formula: see text] is an even function. Using the methods of normal form theory, we found some new and better lower bounds of the maximal number of small-amplitude limit cycles in these systems. Moreover, a complete classification of the center conditions is obtained for such systems.


2008 ◽  
Vol 18 (12) ◽  
pp. 3647-3656 ◽  
Author(s):  
Ł. J. GOŁASZEWSKI ◽  
P. SŁAWIŃSKI ◽  
H. ŻOŁADEK

We study the system ẋ = x(y+2z+(15/2η2)u), ẏ = y(x-2z-(7/2η2)u), ż = -z(x+y+(4/η2)u), u = x+y+z-1, and its two-parameter perturbations. We show that before perturbation there exists a one-parameter family of periodic solutions obtained via a nondegenarate Hopf bifurcation and after perturbation there remains at most one limit cycle of small amplitude and bounded period. Moreover, we found that a secondary Hopf bifurcation to an invariant torus occurs after the perturbation.


2021 ◽  
Vol 31 (12) ◽  
pp. 2150176
Author(s):  
Jiayi Chen ◽  
Yun Tian

In this paper, we obtain an upper bound for the number of small-amplitude limit cycles produced by Hopf bifurcation in one particular type of rational Liénard systems in the form of [Formula: see text], [Formula: see text], where [Formula: see text] and [Formula: see text] are polynomials in [Formula: see text] with degrees [Formula: see text] and [Formula: see text], respectively. Furthermore, we show that the upper bound presented here is sharp in the case of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document