melnikov function
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 19)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Chunyu Zhu ◽  
Yun Tian

In this paper, we consider a nongeneric quadratic reversible system with piecewise polynomial perturbations. We use the expansion of the first order Melnikov function to obtain the maximal number of small-amplitude limit cycles produced by Hopf bifurcation in the perturbed systems.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Meilan Cai ◽  
Maoan Han

In this paper, we consider the bifurcation problem of limit cycles for a class of piecewise smooth cubic systems separated by the straight line [Formula: see text]. Using the first order Melnikov function, we prove that at least [Formula: see text] limit cycles can bifurcate from an isochronous cubic center at the origin under perturbations of piecewise polynomials of degree [Formula: see text]. Further, the maximum number of limit cycles bifurcating from the center of the unperturbed system is at least [Formula: see text] if the origin is the unique singular point under perturbations.


2021 ◽  
Vol 31 (10) ◽  
pp. 2150159
Author(s):  
Ai Ke ◽  
Maoan Han

We study bifurcations of limit cycles arising after perturbations of a special piecewise smooth system, which has a center and a homoclinic loop. By using the Picard–Fuchs equation, we give an upper bound of the maximum number of limit cycles bifurcated from the period annulus between the center and the homoclinic loop. Furthermore, by applying the method of first-order Melnikov function we obtain a lower bound of the maximum number of limit cycles bifurcated from the center.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150123
Author(s):  
Xiaoyan Chen ◽  
Maoan Han

In this paper, we study Poincaré bifurcation of a class of piecewise polynomial systems, whose unperturbed system has a period annulus together with two invariant lines. The main concerns are the number of zeros of the first order Melnikov function and the estimation of the number of limit cycles which bifurcate from the period annulus under piecewise polynomial perturbations of degree [Formula: see text].


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Chengqun Li ◽  
Minzhi Wei ◽  
Yuanhua Lin

In this paper, we establish the existence of a solitary wave in a KdV-mKdV equation with dissipative perturbation by applying the geometric singular perturbation technique and Melnikov function. The distance of the stable manifold and unstable manifold is computed to show the existence of the homoclinic loop for the related ordinary differential equation systems on the slow manifold, which implies the existence of a solitary wave for the KdV-mKdV equation with dissipative perturbation.


2021 ◽  
Vol 31 (06) ◽  
pp. 2150095
Author(s):  
Jihua Yang

This paper is concerned with the number of limit cycles of nonsmooth differential systems [Formula: see text] under nonsmooth perturbations of polynomials of degree at most [Formula: see text], where [Formula: see text]. We first obtain the detailed expansion of the first Melnikov function by computing its generators for [Formula: see text]. Then by using the expansion, we give the upper bounds for the number of limit cycles bifurcating from each period annulus for two cases: [Formula: see text] [Formula: see text] [Formula: see text] and [Formula: see text] [Formula: see text].


2020 ◽  
Vol 30 (15) ◽  
pp. 2050230
Author(s):  
Jiaxin Wang ◽  
Liqin Zhao

In this paper, by using Picard–Fuchs equations and Chebyshev criterion, we study the bifurcation of limit cycles for degenerate quadratic Hamilton systems with polycycles [Formula: see text] or [Formula: see text] under the perturbations of piecewise smooth polynomials with degree [Formula: see text]. Roughly speaking, for [Formula: see text], a polycycle [Formula: see text] is cyclically ordered collection of [Formula: see text] saddles together with orbits connecting them in specified order. The discontinuity is on the line [Formula: see text]. If the first order Melnikov function is not equal to zero identically, it is proved that the upper bounds of the number of limit cycles bifurcating from each of the period annuli with the boundary [Formula: see text] and [Formula: see text] are respectively [Formula: see text] and [Formula: see text] (taking into account the multiplicity).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Junning Cai ◽  
Minzhi Wei ◽  
Hongying Zhu

In this article, we study the limit cycles in a generalized 5-degree Liénard system. The undamped system has a polycycle composed of a homoclinic loop and a heteroclinic loop. It is proved that the system can have 9 limit cycles near the boundaries of the period annulus of the undamped system. The main methods are based on homoclinic bifurcation and heteroclinic bifurcation by asymptotic expansions of Melnikov function near the singular loops. The result gives a relative larger lower bound on the number of limit cycles by Poincaré bifurcation for the generalized Liénard systems of degree five.


2020 ◽  
Vol 51 (11) ◽  
pp. 189-194
Author(s):  
Feng Guo ◽  
Na Li

The equilibrium point and stability of the motion equation of the nonlinear near resonance centrifuge is studied, and the critical conditions for chaotic motions of the system under external excitation are studied by Melnikov method. The expression of Melnikov function and the boundary value between chaotic and non-chaotic regions are given. According to the range of parameters, the numerical simulations are carried out. The results show that the critical parameters of chaotic motion determined using Melnikov method are consistent with that obtained by the numerical simulation. This method effectively judges the occurrence of chaotic motion.


Sign in / Sign up

Export Citation Format

Share Document