COLLECTIVE DYNAMICS AND CONTROL OF A 3-D SMALL-WORLD NETWORK WITH TIME DELAYS

2012 ◽  
Vol 22 (11) ◽  
pp. 1250281 ◽  
Author(s):  
XU XU ◽  
JIAWEI LUO ◽  
YUANTONG GU

The paper presents a detailed analysis on the collective dynamics and delayed state feedback control of a three-dimensional delayed small-world network. The trivial equilibrium of the model is first investigated, showing that the uncontrolled model exhibits complicated unbounded behavior. Then three control strategies, namely a position feedback control, a velocity feedback control, and a hybrid control combined velocity with acceleration feedback, are then introduced to stabilize this unstable system. It is shown in these three control schemes that only the hybrid control can easily stabilize the 3-D network system. And with properly chosen delay and gain in the delayed feedback path, the hybrid controlled model may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are analyzed. The results are further extended to any "d" dimensional network. It shows that to stabilize a "d" dimensional delayed small-world network, at least a "d – 1" order completed differential feedback is needed. This work provides a constructive suggestion for the high dimensional delayed systems.

2006 ◽  
Vol 16 (11) ◽  
pp. 3257-3273 ◽  
Author(s):  
XU XU ◽  
HAIYAN HU ◽  
HUAILEI WANG

This paper presents a detailed analysis on the dynamics of a two-dimensional delayed small-world network under delayed state feedback control. On the basis of stability switch criteria, the equilibrium is studied, and the stability conditions are determined. This study shows that with properly chosen delay and gain in the delayed feedback path, the controlled small-world delayed network may have stable equilibrium, or periodic solutions resulting from the Hopf bifurcation, or the multistability solutions via three types of codimension two bifurcations. Moreover, the direction of Hopf bifurcation and stability of the bifurcation periodic solutions are determined by using the normal form theory and center manifold theorem. In addition, the study shows that the controlled model exhibits period-doubling bifurcations which lead eventually to chaos; and the chaos can also directly occur via the bifurcations from the quasi-periodic solutions. The results show that the delayed feedback is an effective approach in order to generate or annihilate complex behaviors in practical applications.


2017 ◽  
Vol 22 (2) ◽  
pp. 206-215
Author(s):  
Dawei Ding ◽  
Xiaoyun Zhang ◽  
Nian Wang ◽  
Dong Liang

2019 ◽  
Vol 29 (05) ◽  
pp. 1950065
Author(s):  
Yo Horikawa ◽  
Hiroyuki Kitajima ◽  
Haruna Matsushita

Quasiperiodicity and chaos in a ring of unidirectionally coupled sigmoidal neurons (a ring neural oscillator) caused by a single shortcut is examined. A codimension-two Hopf–Hopf bifurcation for two periodic solutions exists in a ring of six neurons without self-couplings and in a ring of four neurons with self-couplings in the presence of a shortcut at specific locations. The locus of the Neimark–Sacker bifurcation of the periodic solution emanates from the Hopf–Hopf bifurcation point and a stable quasiperiodic solution is generated. Arnold’s tongues emanate from the locus of the Neimark–Sacker bifurcation, and multiple chaotic oscillations are generated through period-doubling cascades of periodic solutions in the Arnold’s tongues. Further, such chaotic irregular oscillations due to a single shortcut are also observed in propagating oscillations in a ring of Bonhoeffer–van der Pol (BVP) neurons coupled unidirectionally by slow synapses.


Sign in / Sign up

Export Citation Format

Share Document