pd controller
Recently Published Documents


TOTAL DOCUMENTS

562
(FIVE YEARS 123)

H-INDEX

25
(FIVE YEARS 5)

2022 ◽  
Vol 20 (2) ◽  
pp. 291-300
Author(s):  
Gonzalo Duchen Sanchez ◽  
Basilio Del Muro Cuellar ◽  
Juan Francisco Marquez Rubio ◽  
Martin Velasco Villa ◽  
Miguel Angel Hernandez Perez

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 517
Author(s):  
Zahid Farooq ◽  
Asadur Rahman ◽  
S. M. Suhail Hussain ◽  
Taha Selim Ustun

This work presents the power generation control of a two-area, hybrid, deregulated power system integrated with renewable energy sources (RES). The incorporation of appropriate system non-linearities and RES into the power system makes it complex, but more practical. The hybrid deregulated power system with RES is a complex nonlinear system that regularly exposes the major issue of system dynamic control due to insufficient damping under varying loading circumstances. The generation-demand equilibrium point of the power system varies following a contingency; hence, it becomes difficult to maintain the appropriate equilibrium point via traditional control approaches. To solve this problem, novel control approaches, along with rapid-acting energy storage devices (ESD), are immediate need for advanced power systems. As a result, various secondary controllers are inspected for improvements in system dynamics. A performance comparison infers the cascaded ID-PD controller as the optimum one. The secondary controller gains are successfully optimized by the powerful satin bowerbird optimization (SBO) technique. Additionally, the impact of a super-conducting-magnetic-energy-storage (SMES) device in system dynamics and control of developed power system is analyzed in this study. A sensitivity evaluation (SE) infers that SBO-optimized cascaded ID-PD controller gains are strong enough for alterations in load perturbations, system loading, inertial constant (H), solar irradiance and the DISCO involvement matrix (DIM).


Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 3
Author(s):  
Takahiro Fukui ◽  
Souichiro Matsukawa ◽  
Yasushi Habu ◽  
Yasuhiro Fukuoka

We propose a method to achieve autonomous gait transition according to speed for a quadruped robot pacing at medium speeds. We verified its effectiveness through experiments with the simulation model and the robot we developed. In our proposed method, a central pattern generator (CPG) is applied to each leg. Each leg is controlled by a PD controller based on output from the CPG. The four CPGs are coupled, and a hard-wired CPG network generates a pace pattern by default. In addition, we feed the body tilt back to the CPGs in order to adapt to the body oscillation that changes according to the speed. As a result, our model and robot achieve stable changes in speed while autonomously generating a walk at low speeds and a rotary gallop at high speeds, despite the fact that the walk and rotary gallop are not preprogramed. The body tilt angle feedback is the only factor involved in the autonomous generation of gaits, so it can be easily used for various quadruped robots. Therefore, it is expected that the proposed method will be an effective control method for quadruped robots.


2021 ◽  
Vol 2 (2) ◽  
pp. 60-68
Author(s):  
N. N. A. Rahman ◽  
N. M. Yahya

Mathematical model has been proposed for some system that involves a brushed DC motor and it is widely used in industry. Brushed DC motor ideals for applications with a low- torque, manage to change pace or speed and it is widely used in many applications such as x-y table positioning system, conveyor systems and other system that required to use the features that brushed DC motor have. Mathematical model of brushed DC motor in order to verify the performance of the DC motor. In this paper, mathematical model of brushed DC motor will be derived from a brushed DC motor circuit that consist of two parts that are electrical and mechanical part. To validate the functionality of mathematical model, the performance of the brushed DC motor without any controller will be compared with the brushed DC motor with the presence of PI-PD controller that will be tuned by trial-and-error method. Performances of both brushed DC motor with and without controller will be compared in terms of transient response which are, rise time, Tr, settling time, Ts, steady state error, ess and lastly percentage overshoot. At the end of the study, the brushed DC motor with PI-PD controller show a better performance compared to the brushed DC motor without any controller.


Author(s):  
Tadeo Espinoza ◽  
A. S ́aenz-Esqued ◽  
F. C ́ortes-Mart ́ınez

<p>This work presents an adjustment mechanism with the sliding modes technique to design a proportional derivative (PD) controller with adaptive gains. The objective and contribution are to design a robust adjustment mechanism in the presence of unknown and not modeled perturbations in the system; this perturbation can be considered wind gusts. The robust adjustment mechanism is designed with the MIT rule and the gradient method with the sliding mode theory. The adaptive PD obtained is applied to regulate unmanned fixed-wing miniature aerial vehicle (MAV’s) altitude.</p>


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1045
Author(s):  
Tian Soon Lee ◽  
Esmail Ali Alandoli ◽  
V Vijayakumar

Background Due to the high demand of robots to perform several industrial tasks, such as welding, machining, pick and place, position control in robotics has attracted high attention recently. Controllers’ improvement is also continuous specifically in terms of design simplicity and performance accuracy. This research plans to obtain the SimMechanics model of a two-degree of freedom (DOF) robot and to propose an integrated controller of a proportional–derivative (PD) controller and a fuzzy logic (FL) controller. Methodology The SimMechanics model of the 2-DOF robot is obtained using MATLAB SimMechanics toolbox from a CAD assembly design of the 2-DOF robot. Then, the proposed PD-FL integrated controller is designed and simulated in MATLAB Simulink. The PD controller is widely used for its simplicity, but it doesn’t have a satisfactory performance in difficult tasks. Furthermore, the FL controller is also easy for design and implementation even by non-experts in control theory, but it has the disadvantage of long computational time for multi-input systems due to the increased fuzzy rules. Results The FL controller is integrated with the PD controller for enhanced performance of the 2-DOF robot. The PD-FL integrated controller is developed and tested to control the 2-DOF robot for point-to-point position control and also tip trajectory tracking (TTT) such as triangular TTT and rhombic TTT. Conclusion The PD-FL integrated controller demonstrates enhanced performance compared to the conventional PD controller in both point-to-point position control and TTT. Furthermore, the PD-FL integrated controller has the advantage of less fuzzy rules which helps to overcome the computational time issue of the FL controller.


2021 ◽  
Vol 22 (6) ◽  
pp. 1495-1503
Author(s):  
Julio C. Ramos-Fernández ◽  
Virgilio López-Morales ◽  
Marco A. Márquez-Vera ◽  
Juan Manual Xicotencatl Pérez ◽  
Joel Suarez-Cansino

Author(s):  
Chiraz Ben Jabeur ◽  
Hassene Seddik

Abstract In this paper a complete methodology of modeling and control of quad-rotor aircraft is exposed. In fact, a PD on-line optimized Neural Networks Approach (PD-NN) is developed and applied to control the attitude of a quad-rotor that is evolving in hostile environment with wind gust disturbances and should maintain its position despite of these troubles. Whereas PD classical controllers are dedicated for the positions, altitude and speed control. The main objective of this work is to develop a smart Self-Tuning PD controller for attitude angles control, based on neural networks capable of controlling the quad-rotor for an optimized performance thus following a desired trajectory. Many problems could arise if the quad-rotor is evolving in hostile environments presenting irregular troubles such as wind gusts modeled and applied to the overall system. The quad-rotor has to rapidly achieve tasks while guaranteeing stability and precision and must behave quickly with regards to decision making fronting turbulences. This technique offers some advantages over conventional control methods such as PD controllers. Simulation results are achieved with the use of Matlab/Simulink environment and are established on a comparative study between PD and PD-NN controllers founded on wind disturbances application. These obstacles are applied with numerous degrees of strength to test the quad-rotor comportment. Experimental results are reached with the use of the V-REP environment with which some trajectories are tracked and then applied on a BLADE Inductrix FPV+. These simulations and experimental results are acceptable and have confirmed the efficiency of the proposed PD-NN approach. In fact, this controller has fairly smaller errors than the PD controller and has an improved ability to reject troubles. Moreover, it has confirmed to be extremely vigorous and efficient fronting disturbances in the form of wind disturbances.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012029
Author(s):  
Gaurav Ghosh ◽  
Abhishek Kumar Jha ◽  
Sovan Sundar Dasgupta

Abstract Rotating machinery with high speed powered by industrial motors frequently suffers from instability by exhibiting non-linear jump phenomena, formally known as Sommerfeld effect. The drives whose excitation is a function of the system responses, referred to as non-ideal. The system dynamics of such systems exhibit a couple of complex and interesting features when the input power exceeds a critical value. The present research suggests a novel approach to study the efficacy of active magnetic bearing with fractional PD controller to suppress the instability caused by the Sommerfeld effect. The steady-state results obtained by solving the system characteristic equation numerically is compared with the transient analysis. Finally, root locus method is introduced to obtain the bifurcation points at which this kind of instability completely disappears.


2021 ◽  
Vol 71 (6) ◽  
pp. 836-845
Author(s):  
Mehmet Kum ◽  
Haluk Gozde ◽  
Semih Ozden

On the battlefield of today, it has become an important requirement to hit moving or fixed targets by using tank or artillery ammunition with high precision. However, while there are many articles on guiding tactical missiles, it cannot found sufficient scientific study for guiding tank ammunition in the related literature. In this study, the laser BR-guidance method is offered to the classic tank ammunition with a diameter of 155 mm in order to give the tank a precision strike capacity, as different from the literature. First of all, an ammunition model is created with coefficients of the mass, inertia, and surface area and friction. In addition, an autopilot dynamic is modeled for the pitch and roll axes of the ammunition. Also, the atmosphere model and environmental factors are added to the model. In order to control this nonlinear model, a lead-compensator and a PD-controller are designed. In order for the results to be transferred to a real application, the accelerations obtained must basically be produced by the electric motors that will drive the control surfaces to be designed. At the end of the study, it is seen that both controllers can produce lateral accelerations within limits without reaching high saturation.


Sign in / Sign up

Export Citation Format

Share Document