time delayed feedback
Recently Published Documents


TOTAL DOCUMENTS

477
(FIVE YEARS 82)

H-INDEX

39
(FIVE YEARS 7)

Author(s):  
Д.Д. Кульминский ◽  
В.И. Пономаренко ◽  
М.Д. Прохоров

The possibility of the existence of laminar chaos in coupled time-delayed feedback systems is investigated. The cases of unidirectional and mutual coupling of time-delay systems are considered. It is shown for the first time that laminar chaos can exist not only in a system with a variable delay time, but also in a system with a constant delay time, if it is coupled with a system in the regime of laminar chaos.


Author(s):  
Yong Guo ◽  
Chuanbo Ren

In this paper, the mechanical model of two-degree-of-freedom vehicle semi-active suspension system based on time-delayed feedback control with vertical acceleration of the vehicle body was studied. With frequency-domain analysis method, the optimization of time-delayed feedback control parameters of vehicle suspension system in effective frequency band was studied, and a set of optimization method of time-delayed feedback control parameters based on “equivalent harmonic excitation” was proposed. The time-domain simulation results of vehicle suspension system show that compared with the passive control, the time-delayed feedback control based on the vertical acceleration of the vehicle body under the optimal time-delayed feedback control effectively broadens the vibration absorption bandwidth of the vehicle suspension system. The ride comfort and stability of the vehicle under random road excitation are significantly improved, which provides a theoretical basis for the selection of time-delayed feedback control strategy and the optimal design of time-delayed feedback control parameters of vehicle suspension system.


2021 ◽  
Author(s):  
Sovan Sundar Dasgupta

Abstract In non-ideal vibratory system, the excitation is a nonlinear function of system response. The dynamic behavior of such system is often characterized by an energy source with limited power. The study of instability phenomena in non-ideal rotor driven through a non-ideal energy source is of considerable current interest. The non-ideal rotor system often gets destabilized on exceeding a critical input power near the resonance. This kind of instability is termed as Sommerfeld effect marked with nonlinear jump phenomena. This paper investigates the attenuation of nonlinear jump phenomena and numerical study of bifurcations of a non-ideal unbalanced rotor system with internal damping using time delayed feedback via active magnetic bearings. The results show that the time delay indeed plays a critical role on the suppression of the jump phenomena. Following, some new insights are also revealed through a numerical study of saddle node, Hopf and trans-critical bifurcations with time delay as a bifurcation parameter. The transient analysis confirms the results obtained analytically through the steady-state consideration.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2200
Author(s):  
Ilya V. Sysoev ◽  
Danil D. Kulminskiy ◽  
Vladimir I. Ponomarenko ◽  
Mikhail D. Prokhorov

An approach to solve the inverse problem of the reconstruction of the network of time-delay oscillators from their time series is proposed and studied in the case of the nonstationary connectivity matrix. Adaptive couplings have not been considered yet for this particular reconstruction problem. The problem of coupling identification is reduced to linear optimization of a specially constructed target function. This function is introduced taking into account the continuity of the nonlinear functions of oscillators and does not exploit the mean squared difference between the model and observed time series. The proposed approach allows us to minimize the number of estimated parameters and gives asymptotically unbiased estimates for a large class of nonlinear functions. The approach efficiency is demonstrated for the network composed of time-delayed feedback oscillators with a random architecture of constant and adaptive couplings in the absence of a priori knowledge about the connectivity structure and its evolution. The proposed technique extends the application area of the considered class of methods.


Author(s):  
Xudong Gu ◽  
Fusen Jia ◽  
Zichen Deng ◽  
Rongchun Hu

In this paper, an approximate analytical procedure is proposed to derive the stochastic response of nonlinear viscoelastic systems with time-delayed feedback control force and bounded noise excitation. The viscoelastic force and the time-delayed control force depend on the past histories of the state variables, which will result in infinite-dimensional problem in theoretical analysis. To resolve these difficulties, the viscoelastic force and the time-delayed control force are approximated by the current state variable based on the quasi-periodic behavior of the systematic response. Then, by using the stochastic averaging method for strongly nonlinear systems subjected to bounded noise excitation, an averaged equation for the equivalent system is derived. The Fokker–Plank–Kolmogorov (FPK) equation of the associated averaged equation is solved to derive the stochastic response of the equivalent system. Finally, two typical nonlinear viscoelastic oscillators are worked out and the results demonstrated the effectiveness of the proposed procedure. By utilizing the quasi-periodic behavior and stochastic averaging method of the strongly nonlinear system, the time-delayed control force and the viscoelastic terms can be simplified with equivalent damping force and equivalent restoring force and the resonant response under bounded noise excitation can be obtained analytically. The numerical results showed the accuracy of the proposed method.


2021 ◽  
pp. 107754632110359
Author(s):  
Yue Yu ◽  
Ning Wang ◽  
Zhenyu Chen

Time-delayed feedback control is one of the important active control methods for complex dynamical behaviors in nonlinear systems. Yet its relationship and effectiveness on multiple time scale dynamics need to be further explored. As a purpose to gain insight into such complexity, we investigate the effectiveness of amplitude modulation in controlling (suppressing or enhancing) bursting oscillations in a classical mechanical oscillator with time-delayed feedback. It is shown how the presence of delay can change the amplitude of the singular cycle oscillations, or suppress them altogether. The results are compared to the conventional periodic perturbation method. In many cases, the amplitudes of periodic solutions under delayed feedback are easier to satisfy the technical requirements. If the delayed feedback is added, stable periodic bursting can be easily accomplished. Therefore, we demonstrate that an effective vibration modulation for bursting dynamics is possible if appropriate time delay and feedback gains are chosen.


2021 ◽  
Author(s):  
Qiubao Wang ◽  
Hao Wu ◽  
Yuejuan Yang

Abstract This paper proposes the stiffness nonlinearities and asymmetric SD (smooth and discontinuous) oscillators under time-delay feedback control with a fractional damping. With the effect of displacement and velocity feedback, the oscillator is adjusted to the desired vibration state and then the stochastic resonance (SR) is achieved. This article discusses the contribution of various system parameters and time-delay feedback to SR, especially which induced by fractional damping. It should be noted that this paper provides effective guidance for fault diagnosis and weak signal detection, energy harvesting, vibration isolation and vibration reduction.


Sign in / Sign up

Export Citation Format

Share Document