Bifurcation of Limit Cycles in Small Perturbation of a Class of Liénard Systems

2014 ◽  
Vol 24 (01) ◽  
pp. 1450004 ◽  
Author(s):  
Xianbo Sun ◽  
Hongjian Xi ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this article, we study the limit cycle bifurcation of a Liénard system of type (5,4) with a heteroclinic loop passing through a hyperbolic saddle and a nilpotent saddle. We study the least upper bound of the number of limit cycles bifurcated from the periodic annulus inside the heteroclinic loop by a new algebraic criterion. We also prove at least three limit cycles will bifurcate and six kinds of different distributions of these limit cycles are given. The methods we use and the results we obtain are new.


2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Junning Cai ◽  
Minzhi Wei ◽  
Guoping Pang

In the presented paper, the Abelian integral I h of a Liénard system is investigated, with a heteroclinic loop passing through a nilpotent saddle. By using a new algebraic criterion, we try to find the least upper bound of the number of limit cycles bifurcating from periodic annulus.



2015 ◽  
Vol 25 (05) ◽  
pp. 1550066 ◽  
Author(s):  
Junmin Yang ◽  
Xianbo Sun

In this paper, we first present some general theorems on bifurcation of limit cycles in near-Hamiltonian systems with a nilpotent saddle or a nilpotent cusp. Then we apply the theorems to study the number of limit cycles for some polynomial Liénard systems with a nilpotent saddle or a nilpotent cusp, and obtain some new estimations on the number of limit cycles of these systems.



2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.



2016 ◽  
Vol 26 (02) ◽  
pp. 1650025 ◽  
Author(s):  
R. Asheghi ◽  
A. Bakhshalizadeh

In this work, we study the Abelian integral [Formula: see text] corresponding to the following Liénard system, [Formula: see text] where [Formula: see text], [Formula: see text] and [Formula: see text] are real bounded parameters. By using the expansion of [Formula: see text] and a new algebraic criterion developed in [Grau et al., 2011], it will be shown that the sharp upper bound of the maximal number of isolated zeros of [Formula: see text] is 4. Hence, the above system can have at most four limit cycles bifurcating from the corresponding period annulus. Moreover, the configuration (distribution) of the limit cycles is also determined. The results obtained are new for this kind of Liénard system.



2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.



2018 ◽  
Vol 28 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from some polynomial systems with a double homoclinic loop passing through a nilpotent saddle surrounded by a heteroclinic loop, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles in the following system: [Formula: see text] where [Formula: see text] is a polynomial of degree [Formula: see text].



2014 ◽  
Vol 24 (12) ◽  
pp. 1450153
Author(s):  
Feng Liang ◽  
Maoan Han

In this paper, we present two kinds of generalized double homoclinic loops in planar piecewise smooth systems. For their stability a criterion is provided. Under nondegenerate conditions, we prove that for each case there are at most five limit cycles which can be bifurcated from the generalized double homoclinic loop. Especially, we construct two concrete systems to show that the upper bound can be achieved in both cases.



2017 ◽  
Vol 27 (04) ◽  
pp. 1750055 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from near-Hamiltonian systems where the corresponding Hamiltonian system has a double homoclinic loop passing through a hyperbolic saddle surrounded by a heteroclinic loop with a hyperbolic saddle and a nilpotent saddle, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles of the following system [Formula: see text] as an application of our results, where [Formula: see text] is a polynomial of degree five.



2016 ◽  
Vol 26 (01) ◽  
pp. 1650009 ◽  
Author(s):  
Lijuan Sheng

In this paper, we study the problem of limit cycle bifurcation in two piecewise polynomial systems of Liénard type with multiple parameters. Based on the developed Melnikov function theory, we obtain the maximum number of limit cycles of these two systems.



Sign in / Sign up

Export Citation Format

Share Document