On the Number of Limit Cycles Bifurcated from Some Hamiltonian Systems with a Double Homoclinic Loop and a Heteroclinic Loop

2017 ◽  
Vol 27 (04) ◽  
pp. 1750055 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from near-Hamiltonian systems where the corresponding Hamiltonian system has a double homoclinic loop passing through a hyperbolic saddle surrounded by a heteroclinic loop with a hyperbolic saddle and a nilpotent saddle, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles of the following system [Formula: see text] as an application of our results, where [Formula: see text] is a polynomial of degree five.

2018 ◽  
Vol 28 (01) ◽  
pp. 1850004 ◽  
Author(s):  
Pegah Moghimi ◽  
Rasoul Asheghi ◽  
Rasool Kazemi

In this paper, we study the number of bifurcated limit cycles from some polynomial systems with a double homoclinic loop passing through a nilpotent saddle surrounded by a heteroclinic loop, and obtain some new results on the lower bound of the maximal number of limit cycles for these systems. In particular, we study the bifurcation of limit cycles in the following system: [Formula: see text] where [Formula: see text] is a polynomial of degree [Formula: see text].


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Minzhi Wei ◽  
Junning Cai ◽  
Hongying Zhu

In present paper, the number of zeros of the Abelian integral is studied, which is for some perturbed Hamiltonian system of degree 6. We prove the generating elements of the Abelian integral from a Chebyshev system of accuracy of 3; therefore there are at most 6 zeros of the Abelian integral.


2015 ◽  
Vol 25 (05) ◽  
pp. 1550066 ◽  
Author(s):  
Junmin Yang ◽  
Xianbo Sun

In this paper, we first present some general theorems on bifurcation of limit cycles in near-Hamiltonian systems with a nilpotent saddle or a nilpotent cusp. Then we apply the theorems to study the number of limit cycles for some polynomial Liénard systems with a nilpotent saddle or a nilpotent cusp, and obtain some new estimations on the number of limit cycles of these systems.


2016 ◽  
Vol 26 (11) ◽  
pp. 1650180 ◽  
Author(s):  
Ali Bakhshalizadeh ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this paper, the asymptotic expansion of first-order Melnikov function of a heteroclinic loop connecting a cusp of order two and a hyperbolic saddle for a planar near-Hamiltonian system is given. Next, we consider the limit cycle bifurcations of a hyper-elliptic Liénard system with this kind of heteroclinic loop and study the least upper bound of limit cycles bifurcated from the period annulus inside the heteroclinic loop, from the heteroclinic loop itself and the center. We find that at most three limit cycles can be bifurcated from the period annulus, also we present different distributions of bifurcated limit cycles.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.


2014 ◽  
Vol 24 (01) ◽  
pp. 1450004 ◽  
Author(s):  
Xianbo Sun ◽  
Hongjian Xi ◽  
Hamid R. Z. Zangeneh ◽  
Rasool Kazemi

In this article, we study the limit cycle bifurcation of a Liénard system of type (5,4) with a heteroclinic loop passing through a hyperbolic saddle and a nilpotent saddle. We study the least upper bound of the number of limit cycles bifurcated from the periodic annulus inside the heteroclinic loop by a new algebraic criterion. We also prove at least three limit cycles will bifurcate and six kinds of different distributions of these limit cycles are given. The methods we use and the results we obtain are new.


2015 ◽  
Vol 25 (13) ◽  
pp. 1550176 ◽  
Author(s):  
Feng Liang ◽  
Junmin Yang

In this paper, we deal with limit cycle bifurcations by perturbing a piecewise smooth Hamiltonian system with a generalized homoclinic loop passing through a nonelementary singular point. We first give an expansion of the first Melnikov function corresponding to a period annulus near the generalized homoclinic loop. Then, based on the first coefficients in the expansion we obtain a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Huanhuan Tian ◽  
Maoan Han

We study the expansions of the first order Melnikov functions for general near-Hamiltonian systems near a compound loop with a cusp and a nilpotent saddle. We also obtain formulas for the first coefficients appearing in the expansions and then establish a bifurcation theorem on the number of limit cycles. As an application example, we give a lower bound of the maximal number of limit cycles for a polynomial system of Liénard type.


2012 ◽  
Vol 22 (08) ◽  
pp. 1250189 ◽  
Author(s):  
MAOAN HAN ◽  
JUNMIN YANG ◽  
DONGMEI XIAO

Homoclinic bifurcation is a difficult and important topic of bifurcation theory. As we know, a general theory for a homoclinic loop passing through a hyperbolic saddle was established by [Roussarie, 1986]. Then the method of stability-changing to find limit cycles near a double homoclinic loop passing through a hyperbolic saddle was given in [Han & Chen, 2000], and further developed by [Han et al., 2003; Han & Zhu, 2007]. For a homoclinic loop passing through a nilpotent saddle there are essentially two different cases, which we distinguish by cuspidal type and smooth type, respectively. For the cuspidal type a general theory was recently established in [Zang et al., 2008]. In this paper, we consider limit cycle bifurcation near a double homoclinic loop passing through a nilpotent saddle by studying the analytical property of the first order Melnikov functions for general near-Hamiltonian systems and obtain the conditions for the perturbed system to have 8, 10 or 12 limit cycles in a neighborhood of the loop with seven different distributions. In particular, for the homoclinic loop of smooth type, a general theory is obtained as a consequence. We finally consider some polynomial systems and find a lower bound of the maximal number of limit cycles as an application of our main results.


Sign in / Sign up

Export Citation Format

Share Document