piecewise smooth systems
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 16)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 31 (15) ◽  
Author(s):  
Zhongjian Wang ◽  
Dingheng Pi

In this paper, we study bifurcations of the regularized systems of planar piecewise smooth systems, which have a visible fold-regular point and a sliding or grazing heteroclinic loop. Our results show that if the planar piecewise smooth system with a sliding heteroclinic loop undergoes sliding heteroclinic bifurcation, then the regularized system can bifurcate with a stable limit cycle passing through the regularized region and at most two limit cycles outside the regularized region. The regularized system can have at most three periodic orbits. When the upper subsystem is a Hamiltonian system, the regularized system can bifurcate with a semi-stable periodic orbit. Finally, we discuss two cases when the heteroclinic loop of a piecewise smooth system remains unbroken under a small perturbation. Our results show that the regularized system can bifurcate at most two limit cycles from an inner unstable grazing heteroclinic loop.


2021 ◽  
Vol 31 (03) ◽  
pp. 2130009
Author(s):  
Zhanybai T. Zhusubaliyev ◽  
Viktor Avrutin ◽  
Frank Bastian

The paper describes some aspects of sudden transformations of closed invariant curves in a 2D piecewise smooth map. In particular, using detailed numerically calculated phase portraits, we discuss transitions from smooth to piecewise smooth closed invariant curves. We show that such transitions may occur not only when a closed invariant curve collides with a border but also via a homoclinic bifurcation. Furthermore, we describe an unusual transformation from a closed invariant curve to a large amplitude chaotic attractor and demonstrate that this transition occurs in two steps, involving a small amplitude closed-invariant-curve-like chaotic attractor.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150041
Author(s):  
S. Webber ◽  
M. R. Jeffrey

A singularity is described that creates a forward time loss of determinacy in a two-timescale system, in the limit where the timescale separation is large. We describe how the situation can arise in a dynamical system of two fast variables and three slow variables or parameters, with weakly coupling between the fast variables. A wide set of initial conditions enters the [Formula: see text]-neighborhood of the singularity, and explodes back out of it to fill a large region of phase space, all in finite time. The scenario has particular significance in the application to piecewise-smooth systems, where it arises in the blow up of dynamics at a discontinuity and is followed by abrupt recollapse of solutions to “hide” the loss of determinacy, and yet leave behind a remnant of it in the global dynamics. This constitutes a generalization of a “micro-slip” phenomenon found recently in spring-coupled blocks, whereby coupled oscillators undergo unpredictable stick-slip-stick sequences instigated by a higher codimension form of the singularity. The indeterminacy is localized to brief slips events, but remains evident in the indeterminate sequencing of near-simultaneous slips of multiple blocks.


2019 ◽  
Vol 99 (3) ◽  
pp. 2031-2048 ◽  
Author(s):  
Viktor Avrutin ◽  
Zhanybai T. Zhusubaliyev ◽  
Dan Suissa ◽  
Abdelali El Aroudi

Sign in / Sign up

Export Citation Format

Share Document