Minimum Dominating Set Problem for Unit Disks Revisited

2015 ◽  
Vol 25 (03) ◽  
pp. 227-244 ◽  
Author(s):  
Paz Carmi ◽  
Gautam K. Das ◽  
Ramesh K. Jallu ◽  
Subhas C. Nandy ◽  
Prajwal R. Prasad ◽  
...  

In this article, we study approximation algorithms for the problem of computing minimum dominating set for a given set [Formula: see text] of [Formula: see text] unit disks in [Formula: see text]. We first present a simple [Formula: see text] time 5-factor approximation algorithm for this problem, where [Formula: see text] is the size of the output. The best known 4-factor and 3-factor approximation algorithms for the same problem run in time [Formula: see text] and [Formula: see text] respectively [M. De, G. K. Das, P. Carmi and S. C. Nandy, Approximation algorithms for a variant of discrete piercing set problem for unit disks, Int. J. of Computational Geometry and Appl., 22(6):461–477, 2013]. We show that the time complexity of the in-place 4-factor approximation algorithm for this problem can be improved to [Formula: see text]. A minor modification of this algorithm produces a [Formula: see text]-factor approximation algorithm in [Formula: see text] time. The same techniques can be applied to have a 3-factor and a [Formula: see text]-factor approximation algorithms in time [Formula: see text] and [Formula: see text] respectively. Finally, we propose a very important shifting lemma, which is of independent interest, and it helps to present [Formula: see text]-factor approximation algorithm for the same problem. It also helps to improve the time complexity of the proposed PTAS for the problem.

2009 ◽  
Vol 19 (06) ◽  
pp. 533-556 ◽  
Author(s):  
SERGIO CABELLO ◽  
MARK DE BERG ◽  
PANOS GIANNOPOULOS ◽  
CHRISTIAN KNAUER ◽  
RENÉ VAN OOSTRUM ◽  
...  

Let A and B be two sets of n resp. m disjoint unit disks in the plane, with m ≥ n. We consider the problem of finding a translation or rigid motion of A that maximizes the total area of overlap with B. The function describing the area of overlap is quite complex, even for combinatorially equivalent translations and, hence, we turn our attention to approximation algorithms. We give deterministic (1 - ∊)-approximation algorithms for translations and for rigid motions, which run in O((nm/∊2) log (m/∊)) and O((n2m2/∊3) log m)) time, respectively. For rigid motions, we can also compute a (1 - ∊)-approximation in O((m2n4/3Δ1/3/∊3) log n log m) time, where Δ is the diameter of set A. Under the condition that the maximum area of overlap is at least a constant fraction of the area of A, we give a probabilistic (1 - ∊)-approximation algorithm for rigid motions that runs in O((m2/∊4) log 2(m/∊) log m) time and succeeds with high probability. Our results generalize to the case where A and B consist of possibly intersecting disks of different radii, provided that (i) the ratio of the radii of any two disks in A ∪ B is bounded, and (ii) within each set, the maximum number of disks with a non-empty intersection is bounded.


Sign in / Sign up

Export Citation Format

Share Document