SOME EXACT SEQUENCES FOR THE HOMOTOPY (BI-)MODULE OF A MONOID

2002 ◽  
Vol 12 (01n02) ◽  
pp. 247-284 ◽  
Author(s):  
YUJI KOBAYASHI ◽  
FRIEDRICH OTTO

For finitely presented monoids the homological finiteness conditions left-[Formula: see text], left-[Formula: see text], right-[Formula: see text] and right-[Formula: see text], the homotopical finiteness conditions of having finite derivation type [Formula: see text] and of being of finite homological type [Formula: see text] are developed and the relationship between these notions is investigated in detail. In particular, a result of Pride [40] and Guba and Sapir [27] on the exactness of a sequence of bimodules for the homotopy module is proved in a completely different, purely combinatorial manner. This proof is then translated into a proof of the corresponding result for the left homotopy module, thus giving new insights into the relationship between the finiteness conditions considered.

2019 ◽  
Vol 29 (07) ◽  
pp. 1219-1234 ◽  
Author(s):  
Dessislava Kochloukova

We show that there are uncountably many non-commensurable metabelian pro-[Formula: see text] groups of homological type [Formula: see text] but not of type [Formula: see text], generated by [Formula: see text] element, where [Formula: see text] and [Formula: see text]. In particular there are uncountably many non-commensurable finitely presented metabelian pro-[Formula: see text] groups that are not of type [Formula: see text]. We show furthermore that there are uncountably many non-isomorphic one related 2-generated pro-[Formula: see text] groups.


2005 ◽  
Vol 15 (01) ◽  
pp. 175-205 ◽  
Author(s):  
STUART MCGLASHAN ◽  
ELTON PASKU ◽  
STEPHEN J. PRIDE

Monoids that can be presented by a finite complete rewriting system have both finite derivation type and finite homological type. This paper introduces a higher dimensional analogue of each of these invariants, and relates them to homological finiteness conditions.


2003 ◽  
Vol 13 (03) ◽  
pp. 341-359 ◽  
Author(s):  
Juan M. Alonso ◽  
Susan M. Hermiller

In 1987, Squier defined the notion of finite derivation type for a finitely presented monoid. To do this, he associated a 2-complex to the presentation. The monoid then has finite derivation type if, modulo the action of the free monoid ring, the 1-dimensional homotopy of this complex is finitely generated. Cremanns and Otto showed that finite derivation type implies the homological finiteness condition left FP3, and when the monoid is a group, these two properties are equivalent. In this paper we define a new version of finite derivation type, based on homological information, together with an extension of this finite derivation type to higher dimensions, and show connections to homological type FPnfor both monoids and groups.


2020 ◽  
Vol 71 (4) ◽  
pp. 1461-1488
Author(s):  
Yang Dandan ◽  
Victoria Gould ◽  
Miklós Hartmann ◽  
Nik Ruškuc ◽  
Rida-E Zenab

Abstract A monoid S is right coherent if every finitely generated subact of every finitely presented right S-act is finitely presented. This is a finiteness condition, and we investigate whether or not it is preserved under some standard algebraic and semigroup theoretic constructions: subsemigroups, homomorphic images, direct products, Rees matrix semigroups, including Brandt semigroups, and Bruck–Reilly extensions. We also investigate the relationship with the property of being weakly right noetherian, which requires all right ideals of S to be finitely generated.


2017 ◽  
Vol 27 (04) ◽  
pp. 391-401 ◽  
Author(s):  
Dilber Koçak

For any integer [Formula: see text], we construct examples of finitely presented associative algebras over a field of characteristic [Formula: see text] with intermediate growth of type [Formula: see text]. We produce these examples by computing the growth types of some finitely presented metabelian Lie algebras.


2014 ◽  
Vol 6 (2) ◽  
Author(s):  
Benjamin Fine ◽  
Anthony Gaglione ◽  
Gerhard Rosenberger ◽  
Dennis Spellman

AbstractIn this paper we survey and reflect upon several aspects of the theory of infinite finitely generated and finitely presented groups that were originally motivated by work of Gilbert Baumslag. All but the last of the topics we have chosen are all related in one way or another to the theory of limit groups and the solution of the Tarski problems. These include the residually free and fully residually free properties and the big powers condition; Baumslag doubles and extensions of centralizers; residually-𝒳 groups and extensions of results of Benjamin Baumslag and finally the relationship between CT and CSA groups.


1991 ◽  
Vol 01 (04) ◽  
pp. 445-471 ◽  
Author(s):  
CHRYSTOPHER LEV NEHANIV

Let [Formula: see text] be a type of algebra in the sense of universal algebra. By defining singular simplices in algebras and emulating singular [co] homology, we introduce for each variety, pseudo-variety, and divisional class V of type [Formula: see text], a homology and cohomology theory which measure the V-connectivity of type-[Formula: see text] algebras. Intuitively, if we were to think of an algebra as a space and subalgebras which lie in V as simplices, then V-connectivity describes the failure of subalgebras to lie in V, i.e., it describes the "holes" in this space. These [co]homologies are functorial on the class of type-[Formula: see text] algebras and are characterized by a natural topological interpretation. All these notions extend to subsets of algebras. One obtains for this algebraic connectivity, the long exact sequences, relative [co]homologies, and the analogues of the usual [co]homological notions of the algebraic topologists. In fact, we show that the [co]homologies are actually the same as the simplicial [co]homology of simplicial complexes that depend functorially on the algebras. Thus the connectivities in question have a natural geometric meaning. This allows the wholesale import into algebra of the concepts, results, and techniques of algebraic topology. In particular, functoriality implies that the [co]homology of a pair of algebras A ⊆ B is an invariant of the position of A in B. When one V contains another, we obtain relationships between the [co] homology theories in the form of long exact sequences. Furthermore for finite algebras, V-[co]homology is effectively computable if membership in V is. We obtain an analogue of the Poincaré lemma (stating that subsets of an algebra in V are V-homologically trivial), extremely general guarantees of the existence of subsets with non-trivial V-homology for algebras not in V, long exact V-homotopy sequences, as well as analogues of the powerful Eilenberg-Zilber theorems and Kunneth theorems in the setting of V-connectivity for V a variety or pseudo-variety. Also in the more general case of any divisionally closed V, we construct the long exact Mayer-Vietoris sequences for V-homology. Results for homomorphisms include an algebraic version of contiguity for homomorphisms (which implies they are V-homotopic) and a proof that V-surmorphisms are V-homotopy equivalences. If we allow the divisional classes to vary, then algebraic connectivity may be viewed as a functor from the category of pairs W ⊆ V of divisional classes of [Formula: see text]-algebras with inclusions as morphisms' to the category of functors from pairs of [Formula: see text]-algebras to pairs of simplicial complexes. Examples show the non-triviality of this theory (e.g. "associativity tori"), and two preliminary applications to semigroups are given: 1) a proof that the group connectivity of a torsion semigroup S is homotopy equivalent to a space whose points are the maximal subgroups of S, and 2) an aperiodic connectivity analogue of the fundamental lemma of complexity.


Author(s):  
Lixin Mao

Let [Formula: see text] be the class of all left [Formula: see text]-modules [Formula: see text] which has a projective resolution by finitely generated projectives. An exact sequence [Formula: see text] of right [Formula: see text]-modules is called neat if the sequence [Formula: see text] is exact for any [Formula: see text]. An exact sequence [Formula: see text] of left [Formula: see text]-modules is called clean if the sequence [Formula: see text] is exact for any [Formula: see text]. We prove that every [Formula: see text]-module has a clean-projective precover and a neat-injective envelope. A morphism [Formula: see text] of right [Formula: see text]-modules is called a neat-phantom morphism if [Formula: see text] for any [Formula: see text]. A morphism [Formula: see text] of left [Formula: see text]-modules is said to be a clean-cophantom morphism if [Formula: see text] for any [Formula: see text]. We establish the relationship between neat-phantom (respectively, clean-cophantom) morphisms and neat (respectively, clean) exact sequences. Also, we prove that every [Formula: see text]-module has a neat-phantom cover with kernel neat-injective and a clean-cophantom preenvelope with cokernel clean-projective.


Geophysics ◽  
1952 ◽  
Vol 17 (1) ◽  
pp. 116-128 ◽  
Author(s):  
G. M. Habberjam ◽  
John T. Whetton

An account is given of an investigation into the relationship between charge of explosive fired and seismic amplitude in routine quarry blasting. By keeping the instrument fixed over the investigation and by choosing a suitable recording position the effects of site factor can be considered to have been reduced to a practical minimum. The observations, which were made at distances of approximately 400 feet, give a relation between first peak amplitude and charge of the type, [Formula: see text] where the factor Q varied between 1 and 3 approximately and would apparently be assignable to varying blasting conditions. The results have also been reviewed in the light of an amplitude square relation modified on the supposition that the energy loss involved in practical blasting is a function of the charge.


2005 ◽  
Vol 72 (1) ◽  
pp. 109-127 ◽  
Author(s):  
Dessislava H. Kochloukova

We classify the Hopf algebras U (L)#kQ of homological type FP2 where L is a Lie algebra and Q an Abelian group such that L has an Abelian ideal A invariant under the Q-action via conjugation and U (L/A)#kQ is commutative. This generalises the classification of finitely presented metabelian Lie algebras given by J. Groves and R. Bryant.


Sign in / Sign up

Export Citation Format

Share Document