ALGEBRAIC CONNECTIVITY

1991 ◽  
Vol 01 (04) ◽  
pp. 445-471 ◽  
Author(s):  
CHRYSTOPHER LEV NEHANIV

Let [Formula: see text] be a type of algebra in the sense of universal algebra. By defining singular simplices in algebras and emulating singular [co] homology, we introduce for each variety, pseudo-variety, and divisional class V of type [Formula: see text], a homology and cohomology theory which measure the V-connectivity of type-[Formula: see text] algebras. Intuitively, if we were to think of an algebra as a space and subalgebras which lie in V as simplices, then V-connectivity describes the failure of subalgebras to lie in V, i.e., it describes the "holes" in this space. These [co]homologies are functorial on the class of type-[Formula: see text] algebras and are characterized by a natural topological interpretation. All these notions extend to subsets of algebras. One obtains for this algebraic connectivity, the long exact sequences, relative [co]homologies, and the analogues of the usual [co]homological notions of the algebraic topologists. In fact, we show that the [co]homologies are actually the same as the simplicial [co]homology of simplicial complexes that depend functorially on the algebras. Thus the connectivities in question have a natural geometric meaning. This allows the wholesale import into algebra of the concepts, results, and techniques of algebraic topology. In particular, functoriality implies that the [co]homology of a pair of algebras A ⊆ B is an invariant of the position of A in B. When one V contains another, we obtain relationships between the [co] homology theories in the form of long exact sequences. Furthermore for finite algebras, V-[co]homology is effectively computable if membership in V is. We obtain an analogue of the Poincaré lemma (stating that subsets of an algebra in V are V-homologically trivial), extremely general guarantees of the existence of subsets with non-trivial V-homology for algebras not in V, long exact V-homotopy sequences, as well as analogues of the powerful Eilenberg-Zilber theorems and Kunneth theorems in the setting of V-connectivity for V a variety or pseudo-variety. Also in the more general case of any divisionally closed V, we construct the long exact Mayer-Vietoris sequences for V-homology. Results for homomorphisms include an algebraic version of contiguity for homomorphisms (which implies they are V-homotopic) and a proof that V-surmorphisms are V-homotopy equivalences. If we allow the divisional classes to vary, then algebraic connectivity may be viewed as a functor from the category of pairs W ⊆ V of divisional classes of [Formula: see text]-algebras with inclusions as morphisms' to the category of functors from pairs of [Formula: see text]-algebras to pairs of simplicial complexes. Examples show the non-triviality of this theory (e.g. "associativity tori"), and two preliminary applications to semigroups are given: 1) a proof that the group connectivity of a torsion semigroup S is homotopy equivalent to a space whose points are the maximal subgroups of S, and 2) an aperiodic connectivity analogue of the fundamental lemma of complexity.

Algorithms ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 223 ◽  
Author(s):  
Alessio Martino ◽  
Alessandro Giuliani ◽  
Antonello Rizzi

This paper investigates a novel graph embedding procedure based on simplicial complexes. Inherited from algebraic topology, simplicial complexes are collections of increasing-order simplices (e.g., points, lines, triangles, tetrahedrons) which can be interpreted as possibly meaningful substructures (i.e., information granules) on the top of which an embedding space can be built by means of symbolic histograms. In the embedding space, any Euclidean pattern recognition system can be used, possibly equipped with feature selection capabilities in order to select the most informative symbols. The selected symbols can be analysed by field-experts in order to extract further knowledge about the process to be modelled by the learning system, hence the proposed modelling strategy can be considered as a grey-box. The proposed embedding has been tested on thirty benchmark datasets for graph classification and, further, we propose two real-world applications, namely predicting proteins’ enzymatic function and solubility propensity starting from their 3D structure in order to give an example of the knowledge discovery phase which can be carried out starting from the proposed embedding strategy.


2002 ◽  
Vol 12 (01n02) ◽  
pp. 247-284 ◽  
Author(s):  
YUJI KOBAYASHI ◽  
FRIEDRICH OTTO

For finitely presented monoids the homological finiteness conditions left-[Formula: see text], left-[Formula: see text], right-[Formula: see text] and right-[Formula: see text], the homotopical finiteness conditions of having finite derivation type [Formula: see text] and of being of finite homological type [Formula: see text] are developed and the relationship between these notions is investigated in detail. In particular, a result of Pride [40] and Guba and Sapir [27] on the exactness of a sequence of bimodules for the homotopy module is proved in a completely different, purely combinatorial manner. This proof is then translated into a proof of the corresponding result for the left homotopy module, thus giving new insights into the relationship between the finiteness conditions considered.


1972 ◽  
Vol 24 (3) ◽  
pp. 439-449
Author(s):  
C. D. Feustel

Let M be a compact, connected, irreducible 3-manifold. Let S be a closed, connected, 2-manifold other than the 2-sphere or projective plane. Let f be a map of S into M such thatSuppose for every closed, connected surface S1 and every map g:S1 → M such that(1) is an injection,(1) Then we shall say that the subgroup is a surface maximal or S-maximal subgroup of π1(M). We may also say that the map f is S-maximal.Let M be an irreducible 3-manifold which does not admit any embedding of the projective plane. Then we shall say that M is p2-irreducible. Throughout this paper all spaces will be simplicial complexes and all maps will be piecewise linear.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Reza Ghorbanchian ◽  
Juan G. Restrepo ◽  
Joaquín J. Torres ◽  
Ginestra Bianconi

AbstractSimplicial complexes capture the underlying network topology and geometry of complex systems ranging from the brain to social networks. Here we show that algebraic topology is a fundamental tool to capture the higher-order dynamics of simplicial complexes. In particular we consider topological signals, i.e., dynamical signals defined on simplices of different dimension, here taken to be nodes and links for simplicity. We show that coupling between signals defined on nodes and links leads to explosive topological synchronization in which phases defined on nodes synchronize simultaneously to phases defined on links at a discontinuous phase transition. We study the model on real connectomes and on simplicial complexes and network models. Finally, we provide a comprehensive theoretical approach that captures this transition on fully connected networks and on random networks treated within the annealed approximation, establishing the conditions for observing a closed hysteresis loop in the large network limit.


2018 ◽  
Vol 99 (1) ◽  
pp. 83-88
Author(s):  
HANGYANG MENG ◽  
XIUYUN GUO

A subgroup $H$ is called a weak second maximal subgroup of $G$ if $H$ is a maximal subgroup of a maximal subgroup of $G$. Let $m(G,H)$ denote the number of maximal subgroups of $G$ containing $H$. We prove that $m(G,H)-1$ divides the index of some maximal subgroup of $G$ when $H$ is a weak second maximal subgroup of $G$. This partially answers a question of Flavell [‘Overgroups of second maximal subgroups’, Arch. Math.64(4) (1995), 277–282] and extends a result of Pálfy and Pudlák [‘Congruence lattices of finite algebras and intervals in subgroup lattices of finite groups’, Algebra Universalis11(1) (1980), 22–27].


2021 ◽  
Vol 8 (10) ◽  
Author(s):  
Sean T. Vittadello ◽  
Michael P. H. Stumpf

In many scientific and technological contexts, we have only a poor understanding of the structure and details of appropriate mathematical models. We often, therefore, need to compare different models. With available data we can use formal statistical model selection to compare and contrast the ability of different mathematical models to describe such data. There is, however, a lack of rigorous methods to compare different models a priori . Here, we develop and illustrate two such approaches that allow us to compare model structures in a systematic way by representing models as simplicial complexes. Using well-developed concepts from simplicial algebraic topology, we define a distance between models based on their simplicial representations. Employing persistent homology with a flat filtration provides for alternative representations of the models as persistence intervals, which represent model structure, from which the model distances are also obtained. We then expand on this measure of model distance to study the concept of model equivalence to determine the conceptual similarity of models. We apply our methodology for model comparison to demonstrate an equivalence between a positional-information model and a Turing-pattern model from developmental biology, constituting a novel observation for two classes of models that were previously regarded as unrelated.


Sign in / Sign up

Export Citation Format

Share Document