scholarly journals ON PRODUCTS OF QUASICONVEX SUBGROUPS IN HYPERBOLIC GROUPS

2004 ◽  
Vol 14 (02) ◽  
pp. 173-195 ◽  
Author(s):  
ASHOT MINASYAN

An interesting question about quasiconvexity in a hyperbolic group concerns finding classes of quasiconvex subsets that are closed under finite intersections. A known example is the class of all quasiconvex subgroups [1]. However, not much is yet learned about the structure of arbitrary quasiconvex subsets. In this work we study the properties of products of quasiconvex subgroups; we show that such sets are quasiconvex and their finite intersections have a similar algebraic representation and, thus, are quasiconvex too.

1996 ◽  
Vol 48 (6) ◽  
pp. 1224-1244 ◽  
Author(s):  
Ilya Kapovich ◽  
Hamish Short

AbstractAnalogues of a theorem of Greenberg about finitely generated subgroups of free groups are proved for quasiconvex subgroups of word hyperbolic groups. It is shown that a quasiconvex subgroup of a word hyperbolic group is a finite index subgroup of only finitely many other subgroups.


2020 ◽  
Vol 30 (06) ◽  
pp. 1161-1166
Author(s):  
Rita Gitik ◽  
Eliyahu Rips

Let [Formula: see text] be a hyperbolic group, [Formula: see text] and [Formula: see text] be subgroups of [Formula: see text], and [Formula: see text] be the growth function of the double cosets [Formula: see text]. We prove that the behavior of [Formula: see text] splits into two different cases. If [Formula: see text] and [Formula: see text] are not quasiconvex, we obtain that every growth function of a finitely presented group can appear as [Formula: see text]. We can even take [Formula: see text]. In contrast, for quasiconvex subgroups [Formula: see text] and [Formula: see text] of infinite index, [Formula: see text] is exponential. Moreover, there exists a constant [Formula: see text], such that [Formula: see text] for all big enough [Formula: see text], where [Formula: see text] is the growth function of the group [Formula: see text]. So, we have a clear dichotomy between the quasiconvex and non-quasiconvex case.


2008 ◽  
Vol 18 (01) ◽  
pp. 97-110 ◽  
Author(s):  
IGOR BELEGRADEK ◽  
ANDRZEJ SZCZEPAŃSKI

We generalize some results of Paulin and Rips-Sela on endomorphisms of hyperbolic groups to relatively hyperbolic groups, and in particular prove the following. • If G is a nonelementary relatively hyperbolic group with slender parabolic subgroups, and either G is not co-Hopfian or Out (G) is infinite, then G splits over a slender group. • If H is a nonparabolic subgroup of a relatively hyperbolic group, and if any isometric H-action on an ℝ-tree is trivial, then H is Hopfian. • If G is a nonelementary relatively hyperbolic group whose peripheral subgroups are finitely generated, then G has a nonelementary relatively hyperbolic quotient that is Hopfian. • Any finitely presented group is isomorphic to a finite index subgroup of Out (H) for some group H with Kazhdan property (T). (This sharpens a result of Ollivier–Wise).


2020 ◽  
pp. 1-47
Author(s):  
RYOKICHI TANAKA

Abstract Weshow that for every non-elementary hyperbolic group the Bowen–Margulis current associated with a strongly hyperbolic metric forms a unique group-invariant Radon measure class of maximal Hausdorff dimension on the boundary square. Applications include a characterization of roughly similar hyperbolic metrics via mean distortion.


2015 ◽  
Vol 25 (05) ◽  
pp. 689-723 ◽  
Author(s):  
Inna Bumagin

If u and v are two conjugate elements of a hyperbolic group then the length of a shortest conjugating element for u and v can be bounded by a linear function of the sum of their lengths, as was proved by Lysenok in [Some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat. 53(4) (1989) 814–832, 912]. Bridson and Haefliger showed in [Metrics Spaces of Non-Positive Curvature (Springer-Verlag, Berlin, 1999)] that in a hyperbolic group the conjugacy problem can be solved in polynomial time. We extend these results to relatively hyperbolic groups. In particular, we show that both the conjugacy problem and the conjugacy search problem can be solved in polynomial time in a relatively hyperbolic group, whenever the corresponding problem can be solved in polynomial time in each parabolic subgroup. We also prove that if u and v are two conjugate hyperbolic elements of a relatively hyperbolic group then the length of a shortest conjugating element for u and v is linear in terms of their lengths.


2015 ◽  
Vol 38 (1) ◽  
pp. 99-123
Author(s):  
Yoshifumi MATSUDA ◽  
Shin-ichi OGUNI ◽  
Saeko YAMAGATA

1992 ◽  
Vol 02 (03) ◽  
pp. 237-274 ◽  
Author(s):  
R.I. GRIGORCHUK ◽  
I.G. LYSIONOK

A description is given for the set of solutions of a quadratic equation in a hyperbolic group. It consists of a finite set of parametric solutions of the equation which generates all solutions by the action of a group which may be interpreted as a special mapping class group of a compact surface.


Author(s):  
Beeker Benjamin ◽  
Matthew Cordes ◽  
Giles Gardam ◽  
Radhika Gupta ◽  
Emily Stark

AbstractMahan Mitra (Mj) proved Cannon–Thurston maps exist for normal hyperbolic subgroups of a hyperbolic group (Mitra in Topology, 37(3):527–538, 1998). We prove that Cannon–Thurston maps do not exist for infinite normal hyperbolic subgroups of non-hyperbolic $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) groups with isolated flats with respect to the visual boundaries. We also show Cannon–Thurston maps do not exist for infinite infinite-index normal $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) subgroups with isolated flats in non-hyperbolic $${{\,\mathrm{CAT}\,}}(0)$$ CAT ( 0 ) groups with isolated flats. We obtain a structure theorem for the normal subgroups in these settings and show that outer automorphism groups of hyperbolic groups have no purely atoroidal $$\mathbb {Z}^2$$ Z 2 subgroups.


2013 ◽  
Vol 149 (5) ◽  
pp. 773-792 ◽  
Author(s):  
Bogdan Nica

AbstractWe show that every non-elementary hyperbolic group $\G $ admits a proper affine isometric action on $L^p(\bd \G \times \bd \G )$, where $\bd \G $ denotes the boundary of $\G $ and $p$ is large enough. Our construction involves a $\G $-invariant measure on $\bd \G \times \bd \G $ analogous to the Bowen–Margulis measure from the ${\rm CAT}(-1)$ setting, as well as a geometric, Busemann-type cocycle. We also deduce that $\G $ admits a proper affine isometric action on the first $\ell ^p$-cohomology group $H^1_{(p)}(\G )$ for large enough $p$.


Sign in / Sign up

Export Citation Format

Share Document