scholarly journals APPLICATIONS OF p-DEFICIENCY AND p-LARGENESS

2011 ◽  
Vol 21 (04) ◽  
pp. 547-574 ◽  
Author(s):  
J. O. BUTTON ◽  
A. THILLAISUNDARAM

We use Schlage-Puchta's concept of p-deficiency and Lackenby's property of p-largeness to show that a group having a finite presentation with p-deficiency greater than 1 is large, which implies that Schlage-Puchta's infinite finitely generated p-groups are not finitely presented. We also show that for all primes p at least 7, any group having a presentation of p-deficiency greater than 1 is Golod–Shafarevich, and has a finite index subgroup which is Golod–Shafarevich for the remaining primes. We also generalize a result of Grigorchuk on Coxeter groups to odd primes.

2013 ◽  
Vol 156 (1) ◽  
pp. 115-121
Author(s):  
ANITHA THILLAISUNDARAM

AbstractIn a previous paper, Button and Thillaisundaram proved that all finitely presented groups of p-deficiency greater than one are p-large. Here we prove that groups with a finite presentation of p-deficiency one possess a finite index subgroup that surjects onto the integers. This implies that these groups do not have Kazhdan's property (T). Additionally, we show that the aforementioned result of Button and Thillaisundaram implies a result of Lackenby.


Author(s):  
Frédérique Bassino ◽  
Cyril Nicaud ◽  
Pascal Weil

We count the finitely generated subgroups of the modular group [Formula: see text]. More precisely, each such subgroup [Formula: see text] can be represented by its Stallings graph [Formula: see text], we consider the number of vertices of [Formula: see text] to be the size of [Formula: see text] and we count the subgroups of size [Formula: see text]. Since an index [Formula: see text] subgroup has size [Formula: see text], our results generalize the known results on the enumeration of the finite index subgroups of [Formula: see text]. We give asymptotic equivalents for the number of finitely generated subgroups of [Formula: see text], as well as of the number of finite index subgroups, free subgroups and free finite index subgroups. We also give the expected value of the isomorphism type of a size [Formula: see text] subgroup and prove a large deviation statement concerning this value. Similar results are proved for finite index and for free subgroups. Finally, we show how to efficiently generate uniformly at random a size [Formula: see text] subgroup (respectively, finite index subgroup, free subgroup) of [Formula: see text].


1998 ◽  
Vol 41 (2) ◽  
pp. 303-313 ◽  
Author(s):  
D. Cooper ◽  
D. D. Long ◽  
A. W. Reid

We prove that any infinite Coxeter group has a finite index subgroup which surjects ℤ.


Author(s):  
Ashot Minasyan

Abstract If $G$ is a group, a virtual retract of $G$ is a subgroup, which is a retract of a finite index subgroup. Most of the paper focuses on two group properties: property (LR), that all finitely generated subgroups are virtual retracts; and property (VRC), that all cyclic subgroups are virtual retracts. We study the permanence of these properties under commensurability, amalgams over retracts, graph products, and wreath products. In particular, we show that (VRC) is stable under passing to finite index overgroups, while (LR) is not. The question whether all finitely generated virtually free groups satisfy (LR) motivates the remaining part of the paper, studying virtual free factors of such groups. We give a simple criterion characterizing when a finitely generated subgroup of a virtually free group is a free factor of a finite index subgroup. We apply this criterion to settle a conjecture of Brunner and Burns.


2018 ◽  
Vol 68 (2) ◽  
pp. 353-360
Author(s):  
Mark Shusterman

Abstract We show that given a finitely generated LERF group G with positive rank gradient, and finitely generated subgroups A, B ≤ G of infinite index, one can find a finite index subgroup B0 of B such that [G : 〈A ∪ B0〉] = ∞. This generalizes a theorem of Olshanskii on free groups. We conclude that a finite product of finitely generated subgroups of infinite index does not cover G. We construct a transitive virtually faithful action of G such that the orbits of finitely generated subgroups of infinite index are finite. Some of the results extend to profinite groups with positive rank gradient.


2007 ◽  
Vol 17 (03) ◽  
pp. 427-447 ◽  
Author(s):  
LUIS PARIS

We prove that a non-spherical irreducible Coxeter group is (directly) indecomposable and that an indefinite irreducible Coxeter group is strongly indecomposable in the sense that all its finite index subgroups are (directly) indecomposable. Let W be a Coxeter group. Write W = WX1 × ⋯ × WXb × WZ3, where WX1, … , WXb are non-spherical irreducible Coxeter groups and WZ3 is a finite one. By a classical result, known as the Krull–Remak–Schmidt theorem, the group WZ3 has a decomposition WZ3 = H1 × ⋯ × Hq as a direct product of indecomposable groups, which is unique up to a central automorphism and a permutation of the factors. Now, W = WX1 × ⋯ × WXb × H1 × ⋯ × Hq is a decomposition of W as a direct product of indecomposable subgroups. We prove that such a decomposition is unique up to a central automorphism and a permutation of the factors. Write W = WX1 × ⋯ × WXa × WZ2 × WZ3, where WX1, … , WXa are indefinite irreducible Coxeter groups, WZ2 is an affine Coxeter group whose irreducible components are all infinite, and WZ3 is a finite Coxeter group. The group WZ2 contains a finite index subgroup R isomorphic to ℤd, where d = |Z2| - b + a and b - a is the number of irreducible components of WZ2. Choose d copies R1, … , Rd of ℤ such that R = R1 × ⋯ × Rd. Then G = WX1 × ⋯ × WXa × R1 × ⋯ × Rd is a virtual decomposition of W as a direct product of strongly indecomposable subgroups. We prove that such a virtual decomposition is unique up to commensurability and a permutation of the factors.


2019 ◽  
pp. 1-19
Author(s):  
STEFAN FRIEDL ◽  
STEFANO VIDUSSI

This paper stems from the observation (arising from work of Delzant) that “most” Kähler groups $G$ virtually algebraically fiber, that is, admit a finite index subgroup that maps onto $\mathbb{Z}$ with finitely generated kernel. For the remaining ones, the Albanese dimension of all finite index subgroups is at most one, that is, they have virtual Albanese dimension $va(G)\leqslant 1$ . We show that the existence of algebraic fibrations has implications in the study of coherence and higher BNSR invariants of the fundamental group of aspherical Kähler surfaces. The class of Kähler groups with $va(G)=1$ includes virtual surface groups. Further examples exist; nonetheless, they exhibit a strong relation with surface groups. In fact, we show that the Green–Lazarsfeld sets of groups with $va(G)=1$ (virtually) coincide with those of surface groups, and furthermore that the only virtually RFRS groups with $va(G)=1$ are virtually surface groups.


2017 ◽  
Vol 27 (03) ◽  
pp. 299-314
Author(s):  
Oleg Bogopolski ◽  
Kai-Uwe Bux

Suppose that a finitely generated group [Formula: see text] is hyperbolic relative to a collection of subgroups [Formula: see text]. Let [Formula: see text] be subgroups of [Formula: see text] such that [Formula: see text] is relatively quasiconvex with respect to [Formula: see text] and [Formula: see text] is not parabolic. Suppose that [Formula: see text] is elementwise conjugate into [Formula: see text]. Then there exists a finite index subgroup of [Formula: see text] which is conjugate into [Formula: see text]. The minimal length of the conjugator can be estimated. In the case, where [Formula: see text] is a limit group, it is sufficient to assume only that [Formula: see text] is a finitely generated and [Formula: see text] is an arbitrary subgroup of [Formula: see text].


1996 ◽  
Vol 48 (6) ◽  
pp. 1224-1244 ◽  
Author(s):  
Ilya Kapovich ◽  
Hamish Short

AbstractAnalogues of a theorem of Greenberg about finitely generated subgroups of free groups are proved for quasiconvex subgroups of word hyperbolic groups. It is shown that a quasiconvex subgroup of a word hyperbolic group is a finite index subgroup of only finitely many other subgroups.


1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


Sign in / Sign up

Export Citation Format

Share Document