scholarly journals A train track directed random walk on Out(Fr)

2015 ◽  
Vol 25 (05) ◽  
pp. 745-798 ◽  
Author(s):  
Ilya Kapovich ◽  
Catherine Pfaff

Several known results, by Rivin, Calegari-Maher and Sisto, show that an element φn ∈ Out (Fr), obtained after n steps of a simple random walk on Out (Fr), is fully irreducible with probability tending to 1 as n → ∞. In this paper, we construct a natural "train track directed" random walk 𝒲 on Out (Fr) (where r ≥ 3). We show that, for the element φn ∈ Out (Fr), obtained after n steps of this random walk, with asymptotically positive probability the element φn has the following properties: φn is an ageometric fully irreducible, which admits a train track representative with no periodic Nielsen paths and exactly one nondegenerate illegal turn, that φn has "rotationless index" [Formula: see text] (so that the geometric index of the attracting tree Tφn of φn is 2r - 3), has index list [Formula: see text] and the ideal Whitehead graph being the complete graph on 2r - 1 vertices, and that the axis bundle of φn in the Outer space CV r consists of a single axis.

1976 ◽  
Vol 13 (02) ◽  
pp. 355-356 ◽  
Author(s):  
Aidan Sudbury

Particles are situated on a rectangular lattice and proceed to invade each other's territory. When they are equally competitive this creates larger and larger blocks of one type as time goes by. It is shown that the expected size of such blocks is equal to the expected range of a simple random walk.


1996 ◽  
Vol 33 (1) ◽  
pp. 122-126
Author(s):  
Torgny Lindvall ◽  
L. C. G. Rogers

The use of Mineka coupling is extended to a case with a continuous state space: an efficient coupling of random walks S and S' in can be made such that S' — S is virtually a one-dimensional simple random walk. This insight settles a zero-two law of ergodicity. One more proof of Blackwell's renewal theorem is also presented.


2021 ◽  
Author(s):  
Thi Thi Zin ◽  
Pyke Tin ◽  
Pann Thinzar Seint ◽  
Kosuke Sumi ◽  
Ikuo Kobayashi ◽  
...  

2010 ◽  
Vol 149 (2) ◽  
pp. 351-372
Author(s):  
WOUTER KAGER ◽  
LIONEL LEVINE

AbstractInternal diffusion-limited aggregation is a growth model based on random walk in ℤd. We study how the shape of the aggregate depends on the law of the underlying walk, focusing on a family of walks in ℤ2 for which the limiting shape is a diamond. Certain of these walks—those with a directional bias toward the origin—have at most logarithmic fluctuations around the limiting shape. This contrasts with the simple random walk, where the limiting shape is a disk and the best known bound on the fluctuations, due to Lawler, is a power law. Our walks enjoy a uniform layering property which simplifies many of the proofs.


1992 ◽  
Vol 29 (02) ◽  
pp. 305-312 ◽  
Author(s):  
W. Katzenbeisser ◽  
W. Panny

Let Qn denote the number of times where a simple random walk reaches its maximum, where the random walk starts at the origin and returns to the origin after 2n steps. Such random walks play an important role in probability and statistics. In this paper the distribution and the moments of Qn , are considered and their asymptotic behavior is studied.


Sign in / Sign up

Export Citation Format

Share Document