On isomorphism criterion for a subclass of complex filiform Leibniz algebras

2017 ◽  
Vol 27 (07) ◽  
pp. 953-972
Author(s):  
I. S. Rakhimov ◽  
A. Kh. Khudoyberdiyev ◽  
B. A. Omirov ◽  
K. A. Mohd Atan

In this paper, we present an algorithm to give the isomorphism criterion for a subclass of complex filiform Leibniz algebras arising from naturally graded filiform Lie algebras. This subclass appeared as a Leibniz central extension of a linear deformation of filiform Lie algebra. We give the table of multiplication choosing appropriate adapted basis, identify the elementary base changes and describe the behavior of structure constants under these base changes, then combining them the isomorphism criterion is given. The final result of calculations for one particular case also is provided.

2014 ◽  
Vol 13 (04) ◽  
pp. 1350144 ◽  
Author(s):  
JOAN FELIPE HERRERA-GRANADA ◽  
PAULO TIRAO

For each complex 8-dimensional filiform Lie algebra we find another nonisomorphic Lie algebra that degenerates to it. Since this is already known for nilpotent Lie algebras of rank ≥ 1, only the characteristically nilpotent ones should be considered.


2013 ◽  
Vol 12 (04) ◽  
pp. 1250196 ◽  
Author(s):  
MANUEL CEBALLOS ◽  
JUAN NÚÑEZ ◽  
ÁNGEL F. TENORIO

In this paper, we compute minimal faithful representations of filiform Lie algebras by means of strictly upper-triangular matrices. To obtain such representations, we use nilpotent Lie algebras [Formula: see text]n, of n × n strictly upper-triangular matrices, because any given (filiform) nilpotent Lie algebra [Formula: see text] admits a Lie-algebra isomorphism with a subalgebra of [Formula: see text]n for some n ∈ ℕ\{1}. In this sense, we search for the lowest natural integer n such that the Lie algebra [Formula: see text]n contains the filiform Lie algebra [Formula: see text] as a subalgebra. Additionally, we give a representative of each representation.


2011 ◽  
Vol 21 (05) ◽  
pp. 715-729 ◽  
Author(s):  
ISAMIDDIN S. RAKHIMOV ◽  
MUNTHER A. HASSAN

This paper deals with the classification problems of Leibniz central extensions of linear deformations of a Lie algebra. It is known that any n-dimensional filiform Lie algebra can be represented as a linear deformation of n-dimensional filiform Lie algebra μn given by the brackets [ei, e0] = ei+1, i = 0,1,…,n - 2, in a basis {e0, e1,…,en - 1}. In this paper we consider a linear deformation of μn and its Leibniz central extensions. The resulting algebras are Leibniz algebras, this class is denoted here by Ced (μn). We choose an appropriate basis of Ced (μn) and give general isomorphism criteria. By using the isomorphism criteria, one can classify the class Ced (μn) for any fixed n. Two relevant maple programs are provided.


2009 ◽  
Vol 79 (3) ◽  
pp. 391-404 ◽  
Author(s):  
B. A. OMIROV ◽  
I. S. RAKHIMOV

AbstractIn this paper we propose an approach to classifying a subclass of filiform Leibniz algebras. This subclass arises from the naturally graded filiform Lie algebras. We reconcile and simplify the structure constants of such a class. In the arbitrary fixed dimension case an effective algorithm to control the behavior of the structure constants under adapted transformations of basis is presented. In one particular case, the precise formulas for less than 10 dimensions are given. We provide a computer program in Maple that can be used in computations as well.


2018 ◽  
Vol 18 (2) ◽  
pp. 237-263 ◽  
Author(s):  
Christian Autenried ◽  
Kenro Furutani ◽  
Irina Markina ◽  
Alexander Vasiľev

Abstract The metric approach to studying 2-step nilpotent Lie algebras by making use of non-degenerate scalar products is realised. We show that a 2-step nilpotent Lie algebra is isomorphic to its standard pseudo-metric form, that is a 2-step nilpotent Lie algebra endowed with some standard non-degenerate scalar product compatible with the Lie bracket. This choice of the standard pseudo-metric form allows us to study the isomorphism properties. If the elements of the centre of the standard pseudo-metric form constitute a Lie triple system of the pseudo-orthogonal Lie algebra, then the original 2-step nilpotent Lie algebra admits integer structure constants. Among particular applications we prove that pseudo H-type algebras have bases with rational structure constants, which implies that the corresponding pseudo H-type groups admit lattices.


2019 ◽  
Vol 19 (08) ◽  
pp. 2050149
Author(s):  
Shanshan Liu ◽  
Lina Song ◽  
Rong Tang

In this paper, first we study dual representations and tensor representations of Hom-pre-Lie algebras. Then we develop the cohomology theory of regular Hom-pre-Lie algebras in terms of the cohomology theory of regular Hom-Lie algebras. As applications, we study linear deformations of regular Hom-pre-Lie algebras, which are characterized by the second cohomology groups of regular Hom-pre-Lie algebras with the coefficients in the regular representations. The notion of a Nijenhuis operator on a regular Hom-pre-Lie algebra is introduced which can generate a trivial linear deformation of a regular Hom-pre-Lie algebra. Finally, we introduce the notion of a Hessian structure on a regular Hom-pre-Lie algebra, which is a symmetric nondegenerate 2-cocycle with the coefficient in the trivial representation. We also introduce the notion of an [Formula: see text]-operator on a regular Hom-pre-Lie algebra, by which we give an equivalent characterization of a Hessian structure.


2015 ◽  
Vol 98 ◽  
pp. 181-195 ◽  
Author(s):  
Sh.A. Ayupov ◽  
L.M. Camacho ◽  
A.Kh. Khudoyberdiyev ◽  
B.A. Omirov

2015 ◽  
Vol 67 (3) ◽  
pp. 573-596 ◽  
Author(s):  
Fulin Chen ◽  
Yun Gao ◽  
Naihuan Jing ◽  
Shaobin Tan

AbstractA representation of the central extension of the unitary Lie algebra coordinated with a skew Laurent polynomial ring is constructed using vertex operators over an integral ℤ2–lattice. The irreducible decomposition of the representation is explicitly computed and described. As a by–product, some fundamental representations of affine Kac–Moody Lie algebra of type A(2)n are recovered by the new method.


Axioms ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 10 ◽  
Author(s):  
Rutwig Campoamor-Stursberg ◽  
Francisco Oviaño García

The generic structure and some peculiarities of real rank one solvable Lie algebras possessing a maximal torus of derivations with the eigenvalue spectrum spec ( t ) = 1 , k , k + 1 , ⋯ , n + k − 3 , n + 2 k − 3 for k ≥ 2 are analyzed, with special emphasis on the resulting Lie algebras for which the second Chevalley cohomology space vanishes. From the detailed inspection of the values k ≤ 5 , some series of cohomologically rigid algebras for arbitrary values of k are determined.


Sign in / Sign up

Export Citation Format

Share Document