laurent polynomial ring
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Yumiko Hironaka

We introduce the space [Formula: see text] of quaternion Hermitian forms of size [Formula: see text] on a [Formula: see text]-adic field with odd residual characteristic, and define typical spherical functions [Formula: see text] on [Formula: see text] and give their induction formula on sizes by using local densities of quaternion Hermitian forms. Then, we give functional equation of spherical functions with respect to [Formula: see text], and define a spherical Fourier transform on the Schwartz space [Formula: see text] which is Hecke algebra [Formula: see text]-injective map into the symmetric Laurent polynomial ring of size [Formula: see text]. Then, we determine the explicit formulas of [Formula: see text] by a method of the author’s former result. In the last section, we give precise generators of [Formula: see text] and determine all the spherical functions for [Formula: see text], and give the Plancherel formula for [Formula: see text].


2020 ◽  
Vol 29 (06) ◽  
pp. 2050036
Author(s):  
Sandy Ganzell ◽  
Mercedes V. Gonzalez ◽  
Chloe’ Marcum ◽  
Nina Ryalls ◽  
Mariel Santos

We study the effects of certain local moves on Homflyptand Kauffman polynomials. We show that all Homflypt(or Kauffman) polynomials are equal in a certain nontrivial quotient of the Laurent polynomial ring. As a consequence, we discover some new properties of these invariants.


2018 ◽  
Vol 27 (14) ◽  
pp. 1850076 ◽  
Author(s):  
Lorenzo Traldi

We extend the notion of link colorings with values in an Alexander quandle to link colorings with values in a module [Formula: see text] over the Laurent polynomial ring [Formula: see text]. If [Formula: see text] is a diagram of a link [Formula: see text] with [Formula: see text] components, then the colorings of [Formula: see text] with values in [Formula: see text] form a [Formula: see text]-module [Formula: see text]. Extending a result of Inoue [Knot quandles and infinite cyclic covering spaces, Kodai Math. J. 33 (2010) 116–122], we show that [Formula: see text] is isomorphic to the module of [Formula: see text]-linear maps from the Alexander module of [Formula: see text] to [Formula: see text]. In particular, suppose [Formula: see text] is a field and [Formula: see text] is a homomorphism of rings with unity. Then [Formula: see text] defines a [Formula: see text]-module structure on [Formula: see text], which we denote [Formula: see text]. We show that the dimension of [Formula: see text] as a vector space over [Formula: see text] is determined by the images under [Formula: see text] of the elementary ideals of [Formula: see text]. This result applies in the special case of Fox tricolorings, which correspond to [Formula: see text] and [Formula: see text]. Examples show that even in this special case, the higher Alexander polynomials do not suffice to determine [Formula: see text]; this observation corrects erroneous statements of Inoue [Quandle homomorphisms of knot quandles to Alexander quandles, J. Knot Theory Ramifications 10 (2001) 813–821; op. cit.].


2018 ◽  
Vol 20 ◽  
pp. 01001
Author(s):  
Chang Gyu Whan

In this paper, we will survey recent results on weakly factorial domains base on the results of [11, 13, 14]. LetD be an integral domain, X be an indeterminate over D, d ∈ D, R = D[X,d/X] be a subring of the Laurent polynomial ring D[X,1/X], Γ be a nonzero torsionless commutative cancellative monoid with quotient group G, and D[Γ] be the semigroup ring of Γ over D. Among other things, we show that R is a weakly factorial domain if and only if D is a weakly factorial GCD‐domain and d = 0, d is a unit of D or d is a prime element of D. We also show that if char(D) = 0 (resp., char(D) = p > 0), then D[Γ] is a weakly factorial domain if and only if D is a weakly factorial GCD domain, Γ is a weakly factorial GCD semigroup, and G is of type (0,0,0,…) (resp., (0,0,0,…) except p).


2015 ◽  
Vol 67 (3) ◽  
pp. 573-596 ◽  
Author(s):  
Fulin Chen ◽  
Yun Gao ◽  
Naihuan Jing ◽  
Shaobin Tan

AbstractA representation of the central extension of the unitary Lie algebra coordinated with a skew Laurent polynomial ring is constructed using vertex operators over an integral ℤ2–lattice. The irreducible decomposition of the representation is explicitly computed and described. As a by–product, some fundamental representations of affine Kac–Moody Lie algebra of type A(2)n are recovered by the new method.


2015 ◽  
Vol 218 ◽  
pp. 101-124 ◽  
Author(s):  
Thorsten Holm ◽  
Peter Jørgensen

AbstractThe (usual) Caldero–Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it mapsreachableindecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is acategorificationof the cluster algebra. The definition of the Caldero–Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero–Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero–Chapoton map gives rise to so-calledfriezes, for instance, Conway–Coxeter friezes. We show that the modified Caldero–Chapoton map gives rise to what we callgeneralized friezesand that, for cluster categories of Dynkin typeA, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.


2015 ◽  
Vol 218 ◽  
pp. 101-124 ◽  
Author(s):  
Thorsten Holm ◽  
Peter Jørgensen

AbstractThe (usual) Caldero–Chapoton map is a map from the set of objects of a category to a Laurent polynomial ring over the integers. In the case of a cluster category, it maps reachable indecomposable objects to the corresponding cluster variables in a cluster algebra. This formalizes the idea that the cluster category is a categorification of the cluster algebra. The definition of the Caldero–Chapoton map requires the category to be 2-Calabi-Yau, and the map depends on a cluster-tilting object in the category. We study a modified version of the Caldero–Chapoton map which requires only that the category have a Serre functor and depends only on a rigid object in the category. It is well known that the usual Caldero–Chapoton map gives rise to so-called friezes, for instance, Conway–Coxeter friezes. We show that the modified Caldero–Chapoton map gives rise to what we call generalized friezes and that, for cluster categories of Dynkin type A, it recovers the generalized friezes introduced by combinatorial means in recent work by the authors and Bessenrodt.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550055
Author(s):  
Thomas Hüttemann ◽  
David Quinn

Let C be a bounded cochain complex of finitely generated free modules over the Laurent polynomial ring L = R[x, x-1, y, y-1]. The complex C is called R-finitely dominated if it is homotopy equivalent over R to a bounded complex of finitely generated projective R-modules. Our main result characterizes R-finitely dominated complexes in terms of Novikov cohomology: C is R-finitely dominated if and only if eight complexes derived from C are acyclic; these complexes are C ⊗L R〚x, y〛[(xy)-1] and C ⊗L R[x, x-1]〚y〛[y-1], and their variants obtained by swapping x and y, and replacing either indeterminate by its inverse.


2013 ◽  
Vol 22 (04) ◽  
pp. 1340004 ◽  
Author(s):  
ALISSA S. CRANS ◽  
ALLISON HENRICH ◽  
SAM NELSON

The Alexander biquandle of a virtual knot or link is a module over a 2-variable Laurent polynomial ring which is an invariant of virtual knots and links. The elementary ideals of this module are then invariants of virtual isotopy which determine both the generalized Alexander polynomial (also known as the Sawollek polynomial) for virtual knots and the classical Alexander polynomial for classical knots. For a fixed monomial ordering <, the Gröbner bases for these ideals are computable, comparable invariants which fully determine the elementary ideals and which generalize and unify the classical and generalized Alexander polynomials. We provide examples to illustrate the usefulness of these invariants and propose questions for future work.


Sign in / Sign up

Export Citation Format

Share Document