laurent polynomial
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Ghulam Mustafa ◽  
Muhammad Asghar ◽  
Shafqat Ali ◽  
Ayesha Afzal ◽  
Jia-Bao Liu

New subdivision schemes are always required for the generation of smooth curves and surfaces. The purpose of this paper is to present a general formula for family of parametric ternary subdivision schemes based on the Laurent polynomial method. The different complexity subdivision schemes are obtained by substituting the different values of the parameter. The important properties of the proposed family of subdivision schemes are also presented. The continuity of the proposed family is C 2 m . Comparison shows that the proposed family of subdivision schemes has higher degree of polynomial generation, degree of polynomial reproduction, and continuity compared with the exiting subdivision schemes. Maple software is used for mathematical calculations and plotting of graphs.


Author(s):  
Yumiko Hironaka

We introduce the space [Formula: see text] of quaternion Hermitian forms of size [Formula: see text] on a [Formula: see text]-adic field with odd residual characteristic, and define typical spherical functions [Formula: see text] on [Formula: see text] and give their induction formula on sizes by using local densities of quaternion Hermitian forms. Then, we give functional equation of spherical functions with respect to [Formula: see text], and define a spherical Fourier transform on the Schwartz space [Formula: see text] which is Hecke algebra [Formula: see text]-injective map into the symmetric Laurent polynomial ring of size [Formula: see text]. Then, we determine the explicit formulas of [Formula: see text] by a method of the author’s former result. In the last section, we give precise generators of [Formula: see text] and determine all the spherical functions for [Formula: see text], and give the Plancherel formula for [Formula: see text].


10.37236/9354 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Per Alexandersson ◽  
Luis Angel González-Serrano ◽  
Egor Maximenko ◽  
Mario Alberto Moctezuma-Salazar

Given a symmetric polynomial $P$ in $2n$ variables, there exists a unique symmetric polynomial $Q$ in $n$ variables such that\[P(x_1,\ldots,x_n,x_1^{-1},\ldots,x_n^{-1})=Q(x_1+x_1^{-1},\ldots,x_n+x_n^{-1}).\] We denote this polynomial $Q$ by $\Phi_n(P)$ and show that $\Phi_n$ is an epimorphism of algebras. We compute $\Phi_n(P)$ for several families of symmetric polynomials $P$: symplectic and orthogonal Schur polynomials, elementary symmetric polynomials, complete homogeneous polynomials, and power sums. Some of these formulas were already found by Elouafi (2014) and Lachaud (2016). The polynomials of the form $\Phi_n(\operatorname{s}_{\lambda/\mu}^{(2n)})$, where $\operatorname{s}_{\lambda/\mu}^{(2n)}$ is a skew Schur polynomial in $2n$ variables, arise naturally in the study of the minors of symmetric banded Toeplitz matrices, when the generating symbol is a palindromic Laurent polynomial, and its roots can be written as $x_1,\ldots,x_n,x^{-1}_1,\ldots,x^{-1}_n$. Trench (1987) and Elouafi (2014) found efficient formulas for the determinants of symmetric banded Toeplitz matrices. We show that these formulas are equivalent to the result of Ciucu and Krattenthaler (2009) about the factorization of the characters of classical groups.


Author(s):  
PETER SPACEK

AbstractIn this article we construct Laurent polynomial Landau–Ginzburg models for cominuscule homogeneous spaces. These Laurent polynomial potentials are defined on a particular algebraic torus inside the Lie-theoretic mirror model constructed for arbitrary homogeneous spaces in [Rie08]. The Laurent polynomial takes a similar shape to the one given in [Giv96] for projective complete intersections, i.e., it is the sum of the toric coordinates plus a quantum term. We also give a general enumeration method for the summands in the quantum term of the potential in terms of the quiver introduced in [CMP08], associated to the Langlands dual homogeneous space. This enumeration method generalizes the use of Young diagrams for Grassmannians and Lagrangian Grassmannians and can be defined type-independently. The obtained Laurent polynomials coincide with the results obtained so far in [PRW16] and [PR13] for quadrics and Lagrangian Grassmannians. We also obtain new Laurent polynomial Landau–Ginzburg models for orthogonal Grassmannians, the Cayley plane and the Freudenthal variety.


2020 ◽  
Vol 29 (06) ◽  
pp. 2050036
Author(s):  
Sandy Ganzell ◽  
Mercedes V. Gonzalez ◽  
Chloe’ Marcum ◽  
Nina Ryalls ◽  
Mariel Santos

We study the effects of certain local moves on Homflyptand Kauffman polynomials. We show that all Homflypt(or Kauffman) polynomials are equal in a certain nontrivial quotient of the Laurent polynomial ring. As a consequence, we discover some new properties of these invariants.


Author(s):  
Morou Amidou ◽  
Ousmane Moussa Tessa

In this paper, we present a dynamical method for computing the syzygy module of multivariate Laurent polynomials with coefficients in a Dedekind ring (with zero divisors) by reducing the computation over Laurent polynomial rings to calculations over a polynomial ring via an appropriate isomorphism.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Emmanuel Tsukerman ◽  
Lauren Williams ◽  
Bernd Sturmfels

International audience Kenyon and Pemantle (2014) gave a formula for the entries of a square matrix in terms of connected principal and almost-principal minors. Each entry is an explicit Laurent polynomial whose terms are the weights of domino tilings of a half Aztec diamond. They conjectured an analogue of this parametrization for symmetric matrices, where the Laurent monomials are indexed by Catalan paths. In this paper we prove the Kenyon-Pemantle conjecture, and apply this to a statistics problem pioneered by Joe (2006). Correlation matrices are represented by an explicit bijection from the cube to the elliptope.


2020 ◽  
Vol 71 (2) ◽  
pp. 439-449
Author(s):  
Bo-Hae Im ◽  
Michael Larsen

Abstract Let $f\in{\mathbb{Q}}(x)$ be a non-constant rational function. We consider ‘Waring’s problem for $f(x)$,’ i.e., whether every element of ${\mathbb{Q}}$ can be written as a bounded sum of elements of $\{f(a)\mid a\in{\mathbb{Q}}\}$. For rational functions of degree $2$, we give necessary and sufficient conditions. For higher degrees, we prove that every polynomial of odd degree and every odd Laurent polynomial satisfies Waring’s problem. We also consider the ‘easier Waring’s problem’: whether every element of ${\mathbb{Q}}$ can be represented as a bounded sum of elements of $\{\pm f(a)\mid a\in{\mathbb{Q}}\}$.


2020 ◽  
Vol 109 (2) ◽  
pp. 157-175
Author(s):  
MICHAEL BARNETT ◽  
AMANDA FOLSOM ◽  
WILLIAM J. WESLEY

Let $\unicode[STIX]{x1D707}(m,n)$ (respectively, $\unicode[STIX]{x1D702}(m,n)$) denote the number of odd-balanced unimodal sequences of size $2n$ and rank $m$ with even parts congruent to $2\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$ (respectively, $0\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$) and odd parts at most half the peak. We prove that two-variable generating functions for $\unicode[STIX]{x1D707}(m,n)$ and $\unicode[STIX]{x1D702}(m,n)$ are simultaneously quantum Jacobi forms and mock Jacobi forms. These odd-balanced unimodal rank generating functions are also duals to partial theta functions originally studied by Ramanujan. Our results also show that there is a single $C^{\infty }$ function in $\mathbb{R}\times \mathbb{R}$ to which the errors to modularity of these two different functions extend. We also exploit the quantum Jacobi properties of these generating functions to show, when viewed as functions of the two variables $w$ and $q$, how they can be expressed as the same simple Laurent polynomial when evaluated at pairs of roots of unity. Finally, we make a conjecture which fully characterizes the parity of the number of odd-balanced unimodal sequences of size $2n$ with even parts congruent to $0\!\!\hspace{0.6em}{\rm mod}\hspace{0.2em}4$ and odd parts at most half the peak.


Sign in / Sign up

Export Citation Format

Share Document